(Prazmowski) Mace 1889 Deoxyribonucleic Acid Relatedness and Base Composition Free

Abstract

Estimates of deoxyribonucleic acid (DNA) relatedness and phenotypic characterization of 98 strains revealed that 70 (groups 1A and 1B) were closely related to the type strain and 28 (group 2) were not. Group 1A strains (29) showed 80 to 100% DNA relatedness to the type strain, while the remaining 41 strains (group 1B) gave reduced relatedness values of 57 to 68%. Groups 1A and 1B were phenotypically identical. Low DNA homology values indicated that group 2 strains were not closely related to group 1A or 1B strains or to the type strains of species that have guanine-plus-cytosine contents of 44 to 53 mol% or form gas from carbohydrates or both, namely, , and . Group 2 strains were phenotypically distinct from and the seven recognized species.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-37-4-391
1987-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/37/4/ijsem-37-4-391.html?itemId=/content/journal/ijsem/10.1099/00207713-37-4-391&mimeType=html&fmt=ahah

References

  1. Ali M. M. 1958; Aerobic bacteria involved in the retting of jute. Appl. Microbiol. 6:87–89
    [Google Scholar]
  2. Bredemann G. 1909; Untersuchungen über die Variation und das Stickstoflfbindungsvermögen des Bacillus asterosporus A. M. ausgeführt an 27 Stämmen verschiedener Herkunft. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Abt. 2 Allg. Landwirtsch. Technol. Bakteriol. Gerung. Pflanzenpathol. Pflanzensch. 22:44–89
    [Google Scholar]
  3. Coblentz J. M. 1943; A rapid test for acetylmethylcarbinol production. Am. J. Public Health 33:815
    [Google Scholar]
  4. Edwards P. R., Ewing W. H. 1972 Identification of Enterobacteriaceae. Burgess Publishing Co.; Minneapolis:
    [Google Scholar]
  5. Fahmy F., Flossdorf J., Claus D. 1985; The DNA base composition of the type strains of the genus Bacillus. Syst. Appl. Microbiol. 6:60–65
    [Google Scholar]
  6. Fogarty W. M., Griffin P. J. 1975; Purification and properties of ß-amylase produced by Bacillus polymyxa. J. Appl. Chern. Biotechnol. 25:229–238
    [Google Scholar]
  7. Gordon R. E., Haynes W. C., Pang C. H. 1973 The genus Bacillus. U.S. Department of Agriculture agricultural handbook no. 427. U.S. Department of Agriculture; Washington, D.C.:
    [Google Scholar]
  8. Grau F. H., Wilson P. W. 1962; Physiology of nitrogen fixation by Bacillus polymyxa. J. Bacteriol. 83:490–496
    [Google Scholar]
  9. Hajna A. A. 1945; Triple-sugar iron agar medium for the identification of the intestinal group of bacteria. J. Bacteriol. 49:516–517
    [Google Scholar]
  10. Hensley D. E., Smiley K. L., Boundy J. A., Lagoda A. A. 1980; Beta-amylase production by Bacillus polymyxa on a corn steep-starch-salts medium. Appl. Environ. Microbiol. 39:678680
    [Google Scholar]
  11. Kalininskaya T. A. 1968; Strains of B. polymyxa isolated from nitrogen-fixing bacterial associations. Mikrobiologiya 37:923927
    [Google Scholar]
  12. Koransky J. R., Allen S. D., Dowell V. R. Jr. 1978; Use of ethanol for selective isolation of sporeforming microorganisms. Appl. Environ. Microbiol. 35:762–765
    [Google Scholar]
  13. Ledingham G. A., Neish A. C. 1954 Fermentative production of 2,3-butanediol. 27–93 Underkofler L. A., Hickey R. J.ed Industrial fermentations 2 Chemical Publishing Co., Inc.; New York:
    [Google Scholar]
  14. Mace E. 1889 Traite pratique de bactériologie, 1st. J.-B. Balliere and Fils; Paris:
    [Google Scholar]
  15. Moeller V. 1955; Simplified tests for some amino acid decarboxylases and for the arginine dehydrolase system. Acta Pathol. Microbiol. Scand. 36:158–172
    [Google Scholar]
  16. Nakamura L. K., Swezey J. 1983; Taxonomy of Bacillus circulons Jordan 1890: base composition and reassociation of deoxyribonucleic acid. Int. J. Syst. Bacteriol. 33:46–52
    [Google Scholar]
  17. Porter J. N., Broschard R., Krupka G., Little P., Zellat J. S. 1949; Antibiotics derived from Bacillus polymyxa. Isolation and production of polymyxin. Ann. N.Y. Acad. Sci. 51:857–865
    [Google Scholar]
  18. Schildkraut C. L., Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J. Mol. Biol. 4:430–443
    [Google Scholar]
  19. Segner W. P. 1979; Mesophilic aerobic sporeforming bacteria in the spoilage of low-acid canned foods. Food Technol. 33:55–59 80
    [Google Scholar]
  20. Seki T., Chung C.-K., Mikami H., Oshima Y. 1978; Deoxyribonucleic acid homology and taxonomy of the genus Bacillus. Int. J. Syst. Bacteriol. 28:182–189
    [Google Scholar]
  21. Seldin L., Van Elsas J. D., Penido E. G. C. 1984; Bacillus azotofixans sp. nov., a nitrogen-fixing species from Brazilian soils and grass roots. Int. J. Syst. Bacteriol. 34:451–456
    [Google Scholar]
  22. Skerman V. B. D., McGowan V., Sneath P. H. A.ed 1980 Approved lists of bacterial names. Int. J. Syst. Bacteriol. 30:225–420
    [Google Scholar]
  23. Stansly P. G. 1949; Antibiotics derived from Bacillus polymyxa. Historical aspects. Ann. N.Y. Acad. Sci. 51:855–856
    [Google Scholar]
  24. Steele K. J. 1961; The oxidase reaction as a taxonomic tool. J. Gen. Microbiol. 25:297–306
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-37-4-391
Loading
/content/journal/ijsem/10.1099/00207713-37-4-391
Loading

Data & Media loading...

Most cited Most Cited RSS feed