1887

Abstract

sp. nov. was isolated from a hot spring in New Zealand. The cells were strictly anaerobic, gram negative, sporeforming, and sluggishly motile rods (0.65 to 0.75 μ wide and 2 to 3 μm long). The spherical spores were subterminal to terminal and did not distend the sporangium. Lysis of the culture occurred at the onset of stationary phase. The deoxyribonucleic acid guanine-plus-cytosine content was 39 mol%. The temperature optimum was 68°C (range, > 37 and < 80°C), and the pH optimum was 7.0 to 7.5 (range, > 5.5 and < 9.0). Growth occurred on Trypticase peptone (BBL Microbiology Systems) or yeast extract. However, with the exception of serine, which could be catabolized as the sole carbon source, either peptone or yeast extract was essential for the fermentation of carbohydrates including glucose, maltose, mannose, xylan, starch, and pyruvate. Acetate was always the major fermentation end product. CO, H, and minor quantitites of valerate, butyrate, ethanol, and lactate were also produced. (type strain Rt4-B1) has been deposited with the American Type Culture Collection (ATCC 43204).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-37-2-123
1987-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/37/2/ijsem-37-2-123.html?itemId=/content/journal/ijsem/10.1099/00207713-37-2-123&mimeType=html&fmt=ahah

References

  1. Barker K. A. 1961 Fermentation of nitrogenous organic compound. 151–207 Gunsalus I. C., Stanier R. Y.ed The bacteria: a treatise on structure and function II Academic Press, Inc.; New York:
    [Google Scholar]
  2. Ben-Bassat A., Zeikus J. G. 1981; Thermobacteroides acetoethylicus gen. nov. and sp. nov., a new chemoorganotrophic, anaerobic thermophilic bacterium. Arch. Microbiol 128:265–270
    [Google Scholar]
  3. Castenholz R. W. 1969; Thermophilic blue-green algae and the thermal environment. Bacteriol. Rev. 33:276–304
    [Google Scholar]
  4. Deming J. W. 1986; The biotechnological future for newly described, extremely thermophilic bacteria. Microb. Ecol. 12:111–119
    [Google Scholar]
  5. Fontaine F. E., Peterson W. H., McCoy E., Johnson M. J., Martin G. J. 1942; A new type of fermentation by Clostridium thermoaceticum n. sp. J. Bacteriol. 43:701–715
    [Google Scholar]
  6. Gutmann I., Wahlefeld A. M. 1974 L-(+)-Lactate determination with lactate dehydrogenase and NAD. 1464–1468 Bergmeyer H. U., Gawehu K.ed Methods of enzymatic analysis 3 Academic Press, Inc.; New York:
    [Google Scholar]
  7. International Committee on Systematic Bacteriology 1985; Validation of the publication of new names and new combinations previously effectively published outside the USB. List no. 25. Int. J. Syst. Bacteriol. 35:535
    [Google Scholar]
  8. Johnson E. A., Madia A., Demain A. L. 1981; Chemically defined minimal medium for growth of the anaerobic cellulolytic thermophile Clostridium thermocellum. Appl. Environ. Microbiol. 41:1060–1062
    [Google Scholar]
  9. Klaushofer H., Parkkinen E. 1965; Zur Frage der Bedeutung aerober und anaerober thermophiler Sporenbildner als Infektionsursache in Rübenzucker-Fabriken. I. Clostridium thermohydrosulfuricum, eine neue Art eines Saccharoseabbauenden, thermophilen, Schwefelwasserstoffbildenden Clostridiums. Zuckerindustrie 15:445–449
    [Google Scholar]
  10. Lee C. K., Ordal J. Z. 1967; Regulatory effect of pyruvate on the glucose metabolism of Clostridium thermosaccharolyticum. J. Bacteriol. 94:530–536
    [Google Scholar]
  11. Le Ruyet P., Dubourguier H. C., Albagnac G. 1984; Thermophilic fermentation of cellulose and xylan by methanogenic enrichment cultures: preliminary characterization of main species. System. Appl. Microbiol. 5:247–253
    [Google Scholar]
  12. Lundie L. L., Drake H. L. 1984; Development of a minimally defined medium for the acetogen Clostridium thermoaceticum. J. Bacteriol. 159:700–703
    [Google Scholar]
  13. Martin D. R., Lundie L. L., Kellum R., Drake H. L. 1983; Carbon monoxide-dependent evolution of hydrogen by the homoacetate-fermenting bacterium Clostridium thermoaceticum. Curr. Microbiol. 8:337–340
    [Google Scholar]
  14. Mead G. C. 1971; The amino acid-fermenting Clostridia. J. Gen. Microbiol. 67:47–56
    [Google Scholar]
  15. Morgan H. W., Patel B. K. C., Daniel R. M. 1985; Comparison of a Thermoanaerobium sp. from a New Zealand hot spring with Thermoanaerobium brockii. FEMS Microbiol. Lett. 30:121–124
    [Google Scholar]
  16. Ng T. K., Weimer P. J., Zeikus J. G. 1977; Cellulolytic and physiological properties of Clostridium thermocellum. Arch. Microbiol. 114:1–7
    [Google Scholar]
  17. Ollivier B. M., Mah R. A., Ferguson T. J., Boone D. R., Garcia J. L., Robinson R. 1985; Emendation of the genus Thermobacteroides: Thermobacteroides proteolyticus sp. nov., a proteolytic acetogen from a methanogenic enrichment. Int. J. Syst. Bacteriol. 35:425–428
    [Google Scholar]
  18. Patel B. K. C., Morgan H. W., Daniel R. M. 1985; Fervidobacterium nodosum gen. nov. and spec, nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch. Microbiol. 141:63–69
    [Google Scholar]
  19. Patel B. K. C., Morgan H. W., Daniel R. M. 1985; Thermophilic anaerobic spirochetes in New Zealand hot springs. FEMS Microbiol. Lett. 26:101–106
    [Google Scholar]
  20. Patel B. K. C., Morgan H. W., Daniel R. M. 1985; A simple and efficient method for preparing and dispensing anaerobic media. Biotech. Lett. 7:277–278
    [Google Scholar]
  21. Saiki T., Kobayashi Y., Kawagoe K., Beppu T. 1985; Dictyoglomus thermophilum gen. nov., sp. nov., a chemoorganotrophic, anaerobic, thermophilic bacterium. Int. J. Syst. Bacteriol. 35:253–259
    [Google Scholar]
  22. Schink B., Zeikus J. G. 1983; Clostridium thermosulfurogenes sp. nov., a new thermophile that produces elemental sulphur from thiosulphate. J. Gen. Microbiol. 129:1149–1158
    [Google Scholar]
  23. Sjolander N. O. 1937; Studies on anaerobic bacteria. XII. The fermentation products of Clostridium thermosaccharolyticum. J. Bacteriol. 34:419–428
    [Google Scholar]
  24. Weimer P. J., Wagner L. W., Knowlton S., Ng T. K. 1984; Thermophilic anaerobic bacteria which ferment hemicellulose: characterization of organisms and identification of plasmids. Arch. Microbiol. 138:31–36
    [Google Scholar]
  25. Wiegel J., Braun M., Gottschalk G. 1981; Clostridium thermoautotrophicum species novum, a thermophile producing acetate from molecular hydrogen and carbon dioxide. Curr. Microbiol. 5:255–260
    [Google Scholar]
  26. Wiegel J., Ljungdahl L. G., Rawson J. R. 1979; Isolation from soil and properties of the extreme thermophile Clostridium thermohydrosulfuricum. J. Bacteriol. 139:800–810
    [Google Scholar]
  27. Zeikus J. G., Hegge P. W., Anderson M. A. 1979; Thermoanaerobium brockii gen. nov. and sp. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch. Microbiol. 122:41–48
    [Google Scholar]
  28. Zillig W., Stetter K. O., Schafer W., Janekovic D., Wunderl S., Holz I., Palm P. 1981; Thermoproteales: a novel type of extremely thermoacidophilic anaerobic archaebacterium isolated from Icelandic solfataras. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig. Reihe C 2:205–227
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-37-2-123
Loading
/content/journal/ijsem/10.1099/00207713-37-2-123
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error