1887

Abstract

We examined 36 strains of , and on the basis of phenotypic characters, chemotaxonomic characters, and deoxyribonucleic acid (DNA)-DNA homology. Strains of these three species share many phenotypic characteristics; these organisms exhibit higher levels of DNA-DNA homology and higher levels of electrophoretic enzyme pattern similarity within the three species than with The strains in the three species could be differentiated on the basis of carbon compound assimilation patterns, cellular fatty acid composition, and DNA base composition. We propose that and be transferred to the genus , as comb. nov. and comb, nov., respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-37-1-52
1987-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/37/1/ijsem-37-1-52.html?itemId=/content/journal/ijsem/10.1099/00207713-37-1-52&mimeType=html&fmt=ahah

References

  1. Arima K., Komagata K., Sugiyama S., Kazama M. 1954; Metabolism of aromatic compounds by microbes. II. (i). Taxonomical studies on aromatic compound-utilizing bacteria. Nippon Nogeikagaku Kaishi 28:635–638
    [Google Scholar]
  2. Collins M. D., Pirouz T., Goodfellow M. 1977; Distribution of menaquinones in actinomycètes and corynebacteria. J. Gen. Microbiol. 100:221–230
    [Google Scholar]
  3. Dagley S., Patel M. D. 1957; Oxidation of p-cresol and related compounds by a. Pseudomonas. Biochem. J. 66:227–233
    [Google Scholar]
  4. De Vos P., De Ley J. 1983; Intra- and intergeneric similarities of Pseudomonas and Xanthomonas ribosomal ribonucleic acid cistrons. Int. J. Syst. Bacteriol. 33:487–509
    [Google Scholar]
  5. De Vos P., Kersters K., Falsen E., Pot B., Gillis M., Segers P., De Ley J. 1985; Comamonas Davis and Park 1962 gen. nov., nom. rev. emend., and Comamonas terrigena Hugh 1962 sp. nov., nom. rev. Int. J. Syst. Bacteriol. 35:443–453
    [Google Scholar]
  6. Gilardi G. L. 1985 Cultural and biochemical aspects for identification of glucose-nonfermenting gram-negative rods. 17–84 Gilardi G. L.ed Nonfermentative gram-negative rods Marcel Dekker, Inc.; New York:
    [Google Scholar]
  7. Gray P. H. H. 1928; The formation of indigotin from indol by soil bacteria. Proc. R. Soc. Lond. B Biol. Sci. 102:263–280
    [Google Scholar]
  8. Gray P. H. H., Thornton H. G. 1928; Soil bacteria that decompose certain aromatic compounds. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 2 73:74–96
    [Google Scholar]
  9. Ha D.-M., Komagata K. 1984; Electrophoretic comparison of enzymes in the strains in biovars of Pseudomonas maltophilia. J. Gen. Appl. Microbiol. 30:277–287
    [Google Scholar]
  10. Hucker G. J., Conn H. C. 1923 Method of Gram staining. Technical Bulletin 93 New York State Agricultural Experiment Station; Ithaca:
    [Google Scholar]
  11. Hugh R. 1962; Comamonas terrigena comb. nov. with proposal of a neotype and request for an opinion. Int. Bull. Bacteriol. Nomenci. Taxon. 12:33–35
    [Google Scholar]
  12. Hugh R. 1965; A comparison of Pseudomonas testosteroni and Comamonas terrigena. Int. Bull. Bacteriol. Nomenci. Taxon. 15:125–132
    [Google Scholar]
  13. Hugh R., Leifson E. 1953; The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram-negative bacteria. J. Bacteriol. 66:24–26
    [Google Scholar]
  14. Iizuka H., Komagata K. 1963; An attempt at grouping of the genus Pseudomonas. J. Gen. Appl. Microbiol. 9:73–82
    [Google Scholar]
  15. Iizuka H., Komagata K. 1963; Taxonomy of genus Pseudomonas with special reference to their modes of metabolism of carbon compounds. J. Gen. Appl. Microbiol. 9:83–95
    [Google Scholar]
  16. Iizuka H., Komagata K. 1964; Microbiological studies on petroleum and natural gas. I. Determination of hydrocarbon-utilizing bacteria. J. Gen. Appl. Microbiol. 10:207–221
    [Google Scholar]
  17. Ikemoto S., Kuraishi H., Komagata K., Azuma R., Suto T., Murooka H. 1978; Cellular fatty acid composition in Pseudomonas species. J. Gen. Appl. Microbiol. 24:199–213
    [Google Scholar]
  18. International Committee on Systematic Bacteriology Subcommittee on Pseudomonas and Related Organisms 1982; Minutes of the meeting, 3 and 5 September 1978. Int. J. Syst. Bacteriol. 32:256–257
    [Google Scholar]
  19. Komagata K. 1961; Differentiation of genus Pseudomonas and related aerobic bacteria. J. Gen Appl. Microbiol. 7:282–299
    [Google Scholar]
  20. Leifson E., Hugh R. 1953; Variation in shape and arrangement of bacterial flagella. J. Bacteriol. 65:263–271
    [Google Scholar]
  21. Lessel E. F. 1962; Bacterial type cultures of the American Type Culture Collection I. Int. Bull. Bacteriol. Nomenci. Taxon. 12:71–88
    [Google Scholar]
  22. Mandel M. 1966; Deoxyribonucleic acid base composition in the genus Pseudomonas. J. Gen. Microbiol. 43:273–292
    [Google Scholar]
  23. Marcus P., Talalay P. 1956; Induction and purification of α- and β-hydroxy steroid dehydrogenases. J. Biol. Chem. 218:661–674
    [Google Scholar]
  24. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol. 3:208–218
    [Google Scholar]
  25. O’Donnell A. G., Norris J. R., Berkeley R. C. W., Claus D., Kaneko T., Logan N. A., Nozaki R. 1980; Characterization of Bacillus subtilis, Bacillus pumilus, Bacillus lieheniformis, and Bacillus amyloliquefaciens by pyrolysis gas-liquid chromatography, deoxyribonucleic acid-deoxyribonucleic acid hybridization, biochemical tests, and API systems. Int. J. Syst. Bacteriol. 30:448–459
    [Google Scholar]
  26. Oyaizu H., Komagata K. 1983; Grouping of Pseudomonas species on the basis of cellular fatty acid composition and the quinone system with special reference to the existence of 3-hydroxy fatty acids. J. Gen. Appl. Microbiol. 29:17–40
    [Google Scholar]
  27. Palleroni N. J. 1984 Genus I. Pseudomonas. 141–199 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  28. Palleroni N. J., Doudoroff M. 1972; Some properties and taxonomic subdivisions of the genus Pseudomonas. Annu. Rev. Phytopathol. 10:73–100
    [Google Scholar]
  29. Palleroni N. J., Kunisawa R., Contopoulou R., Doudoroff M. 1973; Nucleic acid homologies in the genus Pseudomonas. Int. J. Syst. Bacteriol. 23:333–339
    [Google Scholar]
  30. Park R. W. A. 1962; A study of certain heterotrophic polarly flagellate water bacteria: Aeromonas, Pseudomonas and Comamonas. J. Gen. Microbiol. 27:121–135
    [Google Scholar]
  31. Rigby P. W. J., Dieckmann M., Rhodes C., Berg P. 1977; Labelling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J. Mol. Biol. 133:237–251
    [Google Scholar]
  32. Saito H., Miura K. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim. Biophys. Acta 72:619–629
    [Google Scholar]
  33. Schleifer K. H., Ludwig W., Kraus J., Festl H. 1985; Cloned ribosomal ribonucleic acid genes from Pseudomonas aeruginosa as probes for conserved deoxyribonucleic acid sequences. Int. J. Syst. Bacteriol. 35:231–236
    [Google Scholar]
  34. Shewan J. M., Hobbs G., Hodgkiss W. 1960; A determinative scheme for the identification of certain genera of gramnegative bacteria, with special reference to the Pseudomonadaceae. J. Appl. Bacteriol. 23:379–390
    [Google Scholar]
  35. Skerman V. B. D., McGowan V., Sneath P. H. A.ed 1980 Approved lists of bacterial names. Int. J. Syst. Bacteriol. 30:225–420
    [Google Scholar]
  36. Sneath P. H. A., Sokal R. R. 1973 Numerical taxonomy. Freeman; San Francisco:
    [Google Scholar]
  37. Stanier R. Y., Palleroni N. J., Doudoroff M. 1966; The aerobic pseudomonads: a taxonomic study. J. Gen. Microbiol. 43:159–271
    [Google Scholar]
  38. Tamaoka J., Katayama-Fujimura Y., Kuraishi H. 1983; Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J. Appl. Bacteriol. 54:31–36
    [Google Scholar]
  39. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol. Lett. 25:125–128
    [Google Scholar]
  40. Whitaker R. J., Byng G. S., Gherna R. L., Jensen R. A. 1981; Comparative allostery of 3-deoxy-d-arabino-heptulosonate 7-phosphate sythetase as an indicator of taxonomic relatedness in pseudomonad genera. J. Bacteriol. 145:752759
    [Google Scholar]
  41. Woese C. R., Weisburg W. G., Paster B. J., Hahn C. M., Tanner R. S., Krieg N. R., Koops H.-P., Harms H., Stackebrandt E. 1984; The phylogeny of purple bacteria: the beta subdivision. Syst. Appl. Micriobiol. 5:327–336
    [Google Scholar]
  42. Woese C. R., Weisburg W. G., Hahn C. M., Paster B. J., Zablen L. B., Lewis B. J., Macke T. J., Ludwig W., Stackebrandt E. 1985; The phylogeny of purple bacteria: the gamma subdivision. Syst. Appl. Microbiol. 6:25–33
    [Google Scholar]
  43. Yano K., Arima K. 1969; Bacterial p-hydroxybenzoate hydroxylase. Enzyme activities in the crude extracts obtained from induced cells. Agric. Biol. Chem. 33:689–697
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-37-1-52
Loading
/content/journal/ijsem/10.1099/00207713-37-1-52
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error