1887

Abstract

The relationships between and the rhizobia that nodulate and (goat’s rue) and recognized species of and were investigated by using deoxyribonucleic acid (DNA)-DNA hybridization, legume nodulation tests, and phage typing. The strains formed a distinct DNA homology group which could be divided into two subgroups. The mean levels of relative homology at 65°C of 11 strains of with reference strains USDA 208 and USDA 191 were 86 and 80%, respectively. These values were significantly higher (Student’s test, < 0.001) than the mean levels of relative homology with DNAs from other groups of rhizobia. The -nodulating rhizobia also formed a distinct DNA homology group. The mean levels of relative homology at 65°C of DNAs from 11 strains with DNAs from reference strains gall and galNW3, which effectively nodulate , were 79 and 85%, respectively. These values were also significantly higher (Student’s test, < 0.001) than the values obtained with DNAs from other groups of rhizobia. These results correlated with cross-inoculation and phage-typing results and indicated that the two groups are genetically distinct. Genomic DNA was used as a probe in a modified colony hybridization autoradiographic procedure for the identification of DNAs from , and sp. () in colonies and from nodules.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-36-4-550
1986-10-01
2022-05-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/36/4/ijsem-36-4-550.html?itemId=/content/journal/ijsem/10.1099/00207713-36-4-550&mimeType=html&fmt=ahah

References

  1. Allen D. N., Allen E. K. 1940; Response of the peanut plant to inoculation with rhizobia, with special reference to morphological development of the nodules. Bot. Gaz. 102:121–142
    [Google Scholar]
  2. Athwal R. S., Deo S. S., Imaeda T. 1984; Deoxyribonucleic acid relatedness among Mycobacterium leprae, Mycobacterium lepraemurium, and selected bcteria by dot blot and spectrophotometric deoxyribonucleic acid hybridization assays. Int. J. Syst. Bacteriol. 34:371–375
    [Google Scholar]
  3. Brenner D. J., Fanning G. R., Johnson K. E., Citarella R. V., Falkow S. 1969; Polynucleotide sequence relationships among members of Enterobacteriaceae. J. Bacteriol. 98:637–650
    [Google Scholar]
  4. Brenner D. J., Fanning G. R., Rake A. V., Johnson K. E. 1969; Batch procedure for thermal elution of DNA from hydroxyapatite. Anal. Biochem. 28:447–459
    [Google Scholar]
  5. Chua K.-Y., Pankhurst C. E., MacDonald P. E., Hopcroft D. H., Jarvis B. D. W., Scott D. B. 1985; Isolation and characterization of transposon Tn5-induced symbiotic mutants of Rhizobium loti. J. Bacteriol. 162:335–343
    [Google Scholar]
  6. Crow V. L., Jarvis B. D. W., Greenwood R. M. 1981; Deoxyribonucleic acid homologies among acid-producing strains of Rhizobium. Int. J. Syst. Bacteriol. 31:152–172
    [Google Scholar]
  7. Dixon R. O. D. 1969; Rhizobia, with particular reference to relationships with host plants. Annu. Rev. Microbiol. 23:137–158
    [Google Scholar]
  8. Finan T. B., Hirsch A. M., Leigh J. A., Johansen E., Kuldau G. A., Deegan S., Walker G. C., Singer E. R. 1985; Symbiotic mutants of R. meliloti that uncouple plant from bacterial differentiation. Cell 40:869–877
    [Google Scholar]
  9. Fischer S. C., Lerman L. S. 1979; Length-indepéndent separation of RNA restriction fragments in two dimension gel electrophoresis. Cell 16:191–200
    [Google Scholar]
  10. Fred E. B., Baldwin I. L., McCoy E. 1983 Root nodule bacteria and leguminous plants. University of Wisconsin Studies of Science no. 5 University of Wisconsin; Madison:
    [Google Scholar]
  11. Gibbins A. M., Gregory K. F. 1972; Relatedness among Rhizobium and Agrobacterium species determined by three methods of nucleic acid hybridization. J. Bacteriol. 111:129–141
    [Google Scholar]
  12. Graham P. H. 1964; The application of computer techniques to the taxonomy of the root nodule bacteria of legumes. J. Gen. Microbiol. 35:511–517
    [Google Scholar]
  13. Hauke-Pacewiczowa T. 1952; Szczepionki dia Galega officinalis. Acta Microbiol. Pol. 1:37–39
    [Google Scholar]
  14. Herblein G. T., De Ley J., Tijtgat R. 1967; Deoxyribonucleic acid homology and taxonomy of Agrobacterium, Rhizobium, and Chromobacterium. J. Bacteriol. 94:116–124
    [Google Scholar]
  15. Hoagland D. R., Arnon D. I. 1950; The water-culture method for growing plants without soil. Calif. Agric. Ext. Serv. Circ. 347:1–32
    [Google Scholar]
  16. Hodgson A. L. M., Roberts W. P. 1983; DNA colony hybridisation to identify Rhizobium strains. J. Gen. Microbiol. 129:207–212
    [Google Scholar]
  17. Jarvis B. D. W., Dick A. G., Greenwood R. M. 1980; Deoxyribonucleic acid homology among strains of Rhizobium trifolii and related species. Int. J. Syst. Bacteriol. 30:42–52
    [Google Scholar]
  18. Jarvis B. D. W., Gillis M., De Ley J. 1986; Intra-and intergeneric similarities between the ribosomal ribonucleic acid cistrons of Rhizobium and Bradyrhizobium species and some related bacteria. Int. J. Syst. Bacteriol. 36:129–138
    [Google Scholar]
  19. Jarvis B. D. W., Pankhurst C. E., Patel J. J. 1982; Rhizobium loti, a new species of legume root nodule bacteria. Int. J. Syst. Bacteriol. 32:378–380
    [Google Scholar]
  20. Jarvis B. D. W., Scott K. F., Hughes J. E., Djordjevic M., Rolfe B. G., Shine J. 1983; Conservation of genetic information between different Rhizobium species. Can. J. Microbiol. 29:200–209
    [Google Scholar]
  21. Jordan D. C. 1982; Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing root nodule bacteria from leguminous plants. Int. J. Syst. Bacteriol. 32:136–139
    [Google Scholar]
  22. Jordan D. C. 1984 Family III Rhizobiaceae Conn 1938. 234 Kreig N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  23. Jordan D. C., Allen D. N. 1974 Family III. Rhizobiaceae Conn 1938. 261 Buchanan R. E., Gibbons N. E.ed Bergey’s manual of determinative bacteriology, 8th ed.. The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  24. Keyser H. H., Bohlool B. B., Hu T. S., Weber D. F. 1981; Fast-growing rhizobia isolated from root nodules of soybean. Science 215:1631–1632
    [Google Scholar]
  25. Lindstrom K., Jarvis B. D. W., Lindstrom P.-E., Patel J. J. 1983; DNA homology, phage-typing and cross-nodulation studies of rhizobia infecting Galega species. Can. J. Microbiol. 29:781–789
    [Google Scholar]
  26. Norris D. O. 1956; Legumes and Rhizobium symbiosis. Emp. J. Exp. Agric. 24:247–270
    [Google Scholar]
  27. Patel J. J. 1976; Morphology and host range of virulent phages of Lotus rhizobia. Can. J. Microbiol. 22:204–212
    [Google Scholar]
  28. Proctor M. H. 1963; Cross-inoculation group relationships of Galega officinalis. N.Z. J. Bot 1:419–425
    [Google Scholar]
  29. Sadowsky M. J., Keyser H. H., Bohlool B. B. 1983; Biochemical characterization of fast-and slow-growing rhizobia that nodulate soybeans. Int. J. Syst. Bacteriol. 33:716–722
    [Google Scholar]
  30. Sayler G. S., Shields M. S., Tedford E. T., Breen A., Hooper S. W., Sirotkin K. M., Davis J. W. 1985; Application of DNA-DNA colony hybridization to the detection of catabolic genotypes in environmental samples. Appl. Environ. Microbiol. 49:1295–1303
    [Google Scholar]
  31. Scholia M. H., Elkan G. H. 1984; Rhizobium fredii sp. nov., a fast-growing species that effectively nodulates soybeans. Int. J. Syst. Bacteriol. 34:484–486
    [Google Scholar]
  32. Scholia M. H., Moorefield J. A., Elkan G. H. 1984; Deoxyribonucleic acid homology between fast-growing soy-bean-nodulating bacteria and other rhizobia. Int. J. Syst. Bacteriol. 34:283–286
    [Google Scholar]
  33. Stowers M. D., Eaglesham A. R. J. 1984; Physiological and symbiotic characteristics of fast-growing R. japonicum. Plant Soil 77:3–14
    [Google Scholar]
  34. Vincent J. M. 1970 A manual for the practical study of root-nodule bacteria. Blackwell Scientific Publications; Oxford:
    [Google Scholar]
  35. Wilson J. K. 1944; Over five hundred reasons for abandoning the cross-inoculation groups of the legumes. Soil Sci. 58:61–69
    [Google Scholar]
  36. Yelton M. M., Yang S. S., Edie S. A., Lim S. T. 1983; Characterisation of an effective salt-tolerant, fast-growing R. japonicum. J. Gen. Microbiol. 129:1537–1547
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-36-4-550
Loading
/content/journal/ijsem/10.1099/00207713-36-4-550
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error