Chemotaxonomic and Molecular-Genetic Studies of the Genus : Evidence for a Phylogenetic Relationship of and to the Genus Free

Abstract

For a detailed pheno- and genotypic characterization of the genus , the following seven representative strains were analyzed: Three extremely thermophilic strains (optimal temperature for growth, 65 to 75°C), DSM 625, “” DSM 674, and “” DSM 579; and four moderately thermophilic strains (optimal temperature for growth 55 to 60°C), DSM 1279 and three new isolates (strains H1, H2, and H3) from sewage. All of these strains exhibited isobranched pentadecanoic and heptadecanoic acids as principal components of their fatty acids, possessed unsaturated menaquinones with eight isoprene units, and had deoxyribonucleic acid guanine-plus-cytosine contents of 59 to 65.5 mol%, and their cell walls contained a murein structure of the A3β variation (interpeptide bridge, Gly). The clustering of the organisms into extremely and moderately thermophilic strains correlated well with molecular properties, such as the absorption spectra of their pigments and the ratio of pentadecanoic acid to heptadecanoic acid. This grouping was confirmed by the results of 16S ribosomal ribonucleic acid cataloging and deoxyribonucleic acid-deoxyribonucleic acid hybridization. Our data confirm current proposals for classification of the genus into the following two distinct species: for the extremely thermophilic strains and for the moderately thermophilic strains. Phylogenetically, representatives of the genus show a remote but significant relationship to species (similarity coefficients, 0.22 to 0.29); members of these two genera share a common peptidoglycan type.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-36-3-444
1986-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/36/3/ijsem-36-3-444.html?itemId=/content/journal/ijsem/10.1099/00207713-36-3-444&mimeType=html&fmt=ahah

References

  1. Brock T. D., Edwards M. R. 1970; Fine structure of Thermus aquaticus, an extreme thermophile. J. Bacteriol. 104:509–517
    [Google Scholar]
  2. Brock T. D., Freeze H. 1969; Thermus aquaticus gen.n. and sp.n., a nonsporulating extreme thermophile. J. Bacteriol. 98:289–297
    [Google Scholar]
  3. Brooks B. W., Murray R. G. E., Johnson J. L., Stacke-brandt E., Woese C. R., Fox G. E. 1980; Red-pigmented micrococci: a basis for taxonomy. Int. J. Syst. Bacteriol. 30:627–646
    [Google Scholar]
  4. Claus D., Lack P., Neu B.ed 1983 Catalogue of strains. Deutsche Sammlung von Mikroorganismen Göttingen: Federal Republic of Germany;
    [Google Scholar]
  5. Collins M. D., Jones D. 1981; Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol. Rev. 45:316–354
    [Google Scholar]
  6. Degryse E., Glansdorff N., Pierard A. 1978; A comparative analysis of extreme thermophilic bacteria belonging to the genus Thermus. Arch. Microbiol. 117:189–196
    [Google Scholar]
  7. De Ley J., Cottoir H., Reynarts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem. 12:133–142
    [Google Scholar]
  8. Erdmann V. A., Wolters J., Huysmans E., Vandenberghe A., De Wachter R. 1984; Collection of published 5S and 5.8S ribosomal RNA sequences. Nucleic Acids Res. 12:rl33–rl66
    [Google Scholar]
  9. Fox G. E., Peckman K. J., Woese C. R. 1977; Comparative cataloguing of 16S ribosomal ribonucleic acid: molecular approach to procaryotic systematics. Int. J. Syst. Bacteriol. 27:44–57
    [Google Scholar]
  10. Frank H., Vujtonvik-Ockenga N., Rettenmeier A. 1983; Amino acid determination by capillary gas chromatography on Chirasil-Val. J. Chromatogr. 279:507–514
    [Google Scholar]
  11. Hammes W., Schleifer K. H., Kandler O. 1973; Mode of action of glycine on the biosynthesis of peptidoglycan. J. Bacteriol. 116:1029–1053
    [Google Scholar]
  12. Harrigan W. F., McCance M. E. 1966 Laboratory methods in microbiology Academic Press, Inc.; London:
    [Google Scholar]
  13. Huss V. A. R., Fertl H., Schleifer K. H. 1983; Studies on the spectrophometric determination of DNA hybridization from renaturation rates. Syst. Appl. Microbiol. 4:184–192
    [Google Scholar]
  14. Komiya M., Kawakami M., Takemura S., Kumagai J., Erdmann V. A. 1983; Terminal heterogeneity and corrections of the nucleotide sequence of 5S rRNA from an extreme thermophile, Thermus thermophilus. Nucleic Acids Res. 11:913–916
    [Google Scholar]
  15. Kroppenstedt R. M. 1982; Separation of bacterial mena-quinones by HPLC using reverse phase (RP 18) and a silver loaded ion exchanger as stationary phases. J. Liq. Chromatogr. 5:2359–2367
    [Google Scholar]
  16. Kroppenstedt R. M. 1985; Fatty acid and menaquinone analysis of Actinomycètes and related organisms. Soc. Appl. Bacteriol. Tech. Ser. 20:73–99
    [Google Scholar]
  17. Loginova L. G., Egerova L. A. 1975; An obligately thermophilic bacterium, Thermus ruber, from hot springs in Kamtchatka. Mikrobiologiya 44:661–665
    [Google Scholar]
  18. Loginova L. G., Egerova L. A., Golovacheva R. S., Seregina L. M. 1984; Thermus ruber sp. nov., nom. rev. Int. J. Syst. Bacteriol. 34:498–499
    [Google Scholar]
  19. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5:109–118
    [Google Scholar]
  20. Merkel G. J., Stapleton S. S., Perry J. J. 1978; Isolation and peptidoglycan of gram-negative hydrocarbon-utilizing thermophilic bacteria. J. Gen. Microbiol. 109:141–148
    [Google Scholar]
  21. Nazar R. N., Matheson A. T. 1977; Nucleotide sequence of Thermus aquaticus ribosomal 5S ribonucleic acid. J. Biol. Chern. 252:4256–4261
    [Google Scholar]
  22. Oshima T., Imahori K. 1974; Description of Thermus thermophilus (Yoshida and Oshima) comb, nov., a nonsporulating thermophilic bacterium from a Japanese thermal spa. Int. J. Syst. Bacteriol. 24:102–112
    [Google Scholar]
  23. Pace N. R., Stahl D. A., Lane D. J., Olsen G. J. 1985; Analyzing natural microbial populations by rRNA sequences. ASM News 51:4–12
    [Google Scholar]
  24. Pask-Hughes R. A., Shaw N. 1982; Glycolipids from some extreme thermophilic bacteria belonging to the genus Thermus. J. Bacteriol. 149:54–58
    [Google Scholar]
  25. Pask-Hughes R. A., Williams R. A. D. 1978; Cell envelope components of strains belonging to the genus Thermus. J. Gen. Microbiol. 107:65–72
    [Google Scholar]
  26. Ramaley R. F., Hixon J. 1970; Isolation of a nonpigmented, thermophilic bacterium similar to Thermus aquaticus. J. Bacteriol. 103:527–528
    [Google Scholar]
  27. Ryter A., Kellenberger E., Birch-Andersen A., Maaloe O. 1958; Etude au microscope électronique de plasmas contenant de l’acide désoxyribonucléique. Les nucleoides des bactéries en croissance active. Z. Naturforsch. 13:597–605
    [Google Scholar]
  28. Saiki T., Kimura R., Arima K. 1972; Isolation and characterization of extremely thermophilic bacteria from hot springs. Agric. Biol. Chern. 36:2357–2366
    [Google Scholar]
  29. Schleifer K. H., Kandler O. 1967; Zur chemischen Zusammensetzung der Zellwand der Steptokokken. I. Die Amino-sâuresequenz des Mureins von Str. thermophilus und Str. faecalis. Arch. Microbiol. 37:335–364
    [Google Scholar]
  30. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacteria cell walls and their taxonomic implications. Bacteriol. Rev. 36:407–477
    [Google Scholar]
  31. Schleifer K. H., Seidel H. P. 1985; Chemical composition and structure of murein. Soc. Appl. Bacteriol. Tech. Ser. 20:201–219
    [Google Scholar]
  32. Shaw N. 1974; Lipid composition as a guide to the classification of bacteria. Adv. Appl. Microbiol. 17:63–108
    [Google Scholar]
  33. Smith N. R., Gordon R. E., Clark J. B. 1952 Aerobic spore forming bacteria. Agriculture monograph no. 16. U.S. Department of Agriculture; Washington, D.C:
    [Google Scholar]
  34. Spurr A. R. 1969; A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26:31–43
    [Google Scholar]
  35. Stackebrandt E., Woese C. R. 1981 The evolution of prokaryotes. 1–31 Carlile M. J., Collins J. E., Moseley B. E. B.ed Molecular and cellular aspects of microbial evolution Cambridge University Press; Cambridge:
    [Google Scholar]
  36. Stackebrandt E., Ludwig W., Fox G. C. 1985 16S ribosomal RNA oligonucleotide cataloguing. 75–107 Gottschalk G.ed Methods in microbiology Academic Press, Inc.; New York:
    [Google Scholar]
  37. Vandenberghe A., Wassink A., Raeymaekers P., De Baere R., Huysmans E., De Wachter R. 1985; Nucleotide sequence, secondary structure and evolution of the 5S ribosomal RNA from five bacterial species. Eur. J. Biochem. 149:537–542
    [Google Scholar]
  38. Zillig W., Stetter K. O., Wunderl S., Schulz W., Pries H., Scholz I. 1980; The Sulfolob ns-” Caldariella” group: taxonomy on the basis of the structure of DNA dependent RNA polymerases. Arch. Microbiol. 125:260–269
    [Google Scholar]
  39. Zimmerman R., Hurriaga R., Becker-Birde J. 1978; Simultaneous determination of the total number of aquatic bacteria and the number thereof involved in respiration. Appl. Environ. Microbiol. 36:926–935
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-36-3-444
Loading
/content/journal/ijsem/10.1099/00207713-36-3-444
Loading

Data & Media loading...

Most cited Most Cited RSS feed