1887

Abstract

Twelve isolates of thermophilic, acidophilic, cellulolytic bacteria were obtained from three different primary enrichment cultures from acidic hot springs at Yellowstone National Park, Wyo. The three isolates which had the highest cellulolytic activity, as shown by the diameter of clearing zones surrounding colonies on cellulose agar plates, were selected for intensive study. All were gram-variable, nonsporulating aerobic rods which formed no pigment. They grew at 37 to 65°C, with optimum growth at 55°C. The pH range for growth was 3.5 to 7, with an optimum pH of 5. The guanine-plus-cytosine content of the deoxyribonucleic acid was 60.7 ± 0.6 mol%. The organisms are resistant to penicillin G at 100 μg/ml. They share several important features with strains, namely heterotrophic, aerobic, and thermophilic mode of growth; morphological features; sensitivity to lysozyme; and presence of catalase. They differ in other important aspects, such as the pattern of carbon sources utilized for growth, the pH and temperature profiles of growth, the pattern of sensitivity to antibiotics, the guanine-plus-cytosine content of DNA, the composition of amino acids in the cell walls, and the structure of the cell walls. species are very sensitive to penicillin G, whereas our strains are resistant. Our strains also are different, in important respects, from the genus . Therefore, we designate the organism gen. nov., sp. nov., of which the type strain is our strain 11B, ATCC 43068.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-36-3-435
1986-07-01
2022-05-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/36/3/ijsem-36-3-435.html?itemId=/content/journal/ijsem/10.1099/00207713-36-3-435&mimeType=html&fmt=ahah

References

  1. Bellamy W. D. 1977; Cellulose and lignocellulose digestion by thermophilic actinomyces for single-cell protein production. Dev. Ind. Microbiol. 18:249–254
    [Google Scholar]
  2. Brock T. D. 1978 Thermophilic microorganisms and life at high temperatures. Springer-Verlag; New York:
    [Google Scholar]
  3. Brock T. D., Edwards M. R. 1970; Fine structure of Thermus aquaticus, an extreme thermophile. J. Bacteriol. 104:509–517
    [Google Scholar]
  4. Brock T. D., Freeze H. 1969; Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J. Bacteriol. 98:289–297
    [Google Scholar]
  5. Brock T. D., Yoder I. 1971; Thermal pollution of a small river by a large university: bacteriological studies. Proc. Indiana Acad. Sci. 80:183–187
    [Google Scholar]
  6. De Ley J. 1970; Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J. Bacteriol. 101:738–754
    [Google Scholar]
  7. Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B.ed 1981 Manual of methods for general bacteriology. American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  8. Himmel M. E., Tucker M. D., Oh K. K. 1983; Applications of high performance size exclusion chromatography in biomass processing. Biotechnol. Bioeng. Symp. 13:583–595
    [Google Scholar]
  9. Jackson T. J., Ramaley R. F., Meinschein W. G. 1973; Thermomicrobium, a new genus of extremely thermophilic bacteria. Int. J. Syst. Bacteriol. 23:28–36
    [Google Scholar]
  10. Loginova L. G., Belyakova L. A., Guzkova E. P., Yusupova I. K., Burdenko L. G., Seregina L. M. 1983; Thermophilic, cellulose-decomposing Myceliophthora thermophila. Mikrobiologiya 52:605–608
    [Google Scholar]
  11. Loginova L. G., Egorova L. A. 1975; An obligately thermophilic bacterium Thermus ruber from hot springs in Kamchatka. Mikrbiologiya 44:661–665
    [Google Scholar]
  12. Loginova L. G., Egorova L. A., Golovacheva R. S., Seregina L. M. 1984; Thermus ruber sp. nov., nom. rev. Int. J. Syst. Bacteriol. 34:498–499
    [Google Scholar]
  13. MacFaddin J. F. 1976 Biochemical tests for identification of medical bacteria. The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  14. Mandels M., Andreotti R. E. 1976; Measurement of saccharifying cellulase. Biotechnol. Bioeng. Symp. 6:17–34
    [Google Scholar]
  15. Markwell M. A. R., Hass S., Tolbert N., Bieber L. 1981; Protein determination in membrane and lipoprotein samples: manual and automated procedures. Methods Enzymol. 72:296–303
    [Google Scholar]
  16. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3:208–218
    [Google Scholar]
  17. McCracken L. D., Gong C. H. 1982; Fermentation of cellulose and hemicellulose carbohydrates by thermotolerant yeasts. Biotechnol. Bioeng. Symp. 12:91–102
    [Google Scholar]
  18. Miller G. L. 1959; Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chern. 31:426–428
    [Google Scholar]
  19. Mirelman D. 1979 Biosynthesis and assembly of cell wall peptidoglycan. 115–168 Inouye M.ed Bacterial outer membranes John Wiley & Sons, Inc.; New York:
    [Google Scholar]
  20. Oshima T., Imahori K. 1974; Description of Thermus thermophilus (Yoshida and Oshima) comb, nov., a nonsporulating thermophilic bacterium from a Japanese thermal spa. Int. J. Syst. Bacteriol. 24:102–112
    [Google Scholar]
  21. Owen R. J., Hill L. R. 1979 The estimation of base compositions, base pairing, and genojne sizes of bacterial DNAs. 277–296 Skinner F. A., Lovelock D. W.ed Identification methods for microbiologists. The Society for Applied Bacteriology Technical Series number 14 Academic Press, Inc.; New York:
    [Google Scholar]
  22. Pask-Hughes R. D., Williams R. A. D. 1977; Yellow-pigmented strains of Thermus spp. from Icelandic hotsprings. J. Gen. Microbiol. 102:375–383
    [Google Scholar]
  23. Ramaley R. F., Hixson J. 1970; Isolation of a nonpigmented, thermophilic bacterium similar to Thermus aquaticus. J. Bacteriol. 103:527–528
    [Google Scholar]
  24. Rosenberg S. L. 1978; Cellulose and lignocellulose degradation by thermophilic and thermotolerant fungi. Mycologia 70:1–13
    [Google Scholar]
  25. Saiki T., Kimura R., Arima K. 1972; Isolation and characterization of extremely thermophilic bacteria from hpt springs. Agric. Biol. Chern. 36:2357–2366
    [Google Scholar]
  26. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36:407–177
    [Google Scholar]
  27. Shaker H. M., Farid M. A., El-Diwang A. I. 1984; Optimization of the composition of the nutrient medium for cellulase and protein biosynthesis by thermophilic Aspergillus fumigatus, NRC 272. Enzyme Microb. Technol. 6:212–216
    [Google Scholar]
  28. Stutzenberger F. J. 1979; Degradation of cellulosic substances by Thermomonospora curvata. Biotechnol. Bioeng. 21:909–913
    [Google Scholar]
  29. Su T. M., Paulavjcius J. 1975; Enzymatic saccharification of cellulose by thermophilic actinomyces. Appl. Polym. Sypip. 28:221–236
    [Google Scholar]
  30. Szybalski W. 1968; Equilibrium sedimentation of viruses, nucleic acids and other macromolecules in density gradients. Fractions 1:1–15
    [Google Scholar]
  31. Tansey M. R. 1971; Agar diffusion assay of cellulolytic ability of thermophilic fungi. Arch. Microbiol. 77:1–11
    [Google Scholar]
  32. Vinograd J., Hearst J. E. 1962; Equilibrium sedimentation of macromolecules and viruses in a density gradient. Fortschr. Chern. Org. Naturst. 20:327–422
    [Google Scholar]
  33. Zeikus J. G. 1979; Thermophilic bacteria: ecology, physiology and technology. Enzyme Microb. Technpl. 1:243–252
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-36-3-435
Loading
/content/journal/ijsem/10.1099/00207713-36-3-435
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error