1887

Abstract

A new species, , is described. The strains investigated were isolated from sludge and from a yeast fermentation process in which methanol was the sole source of carbon and energy. A total of about 140 phenotypic features were tested. The strains proved to be acidophilic and facultatively methylotrophic, and they differed from other species by growing well on methanol, glucose, gluconate, 2,3-butanediol, and caproic acid as sole sources of carbon and energy. Ethanol was “overoxidized” only at initial concentrations of <0.5%. Lactate was oxidized very weakly, but it was not utilized as a sole carbon source for growth. Yeast extract or pantothenic acid was essential for growth. The specific epithet of the proposed new species refers to its isolation from media in which methanol was the sole source of carbon. The deoxyribonucleic acid base composition of type strain MB58 (= IMET 10945) is 62.3 mol% guanine plus cytosine.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-36-2-317
1986-04-01
2022-05-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/36/2/ijsem-36-2-317.html?itemId=/content/journal/ijsem/10.1099/00207713-36-2-317&mimeType=html&fmt=ahah

References

  1. Ameyama M., Kondo K. 1967; Carbohydrate metabolism by the acetic acid bacteria. VI. Characteristics of the intermediate type strains. Agric. Biol. Chem. 31:724–737
    [Google Scholar]
  2. Asai T. 1968 Acetic acid bacteria. Classification and biochemical activities. University of Tokyo Press; Tokyo:
    [Google Scholar]
  3. Asai T., Iizuka H., Komagata K. 1964; The flagellation and taxonomy of the genera Gluconobacter and Acetobacter with reference to the existence of intermediate strains. J. Gen. Appl. Microbiol. 10:95–126
    [Google Scholar]
  4. Asperger O., Aurich H. 1977; Anwendung polarographischer O2-Messungen auf die Veratmung von n-Alkanen und deren Derivaten durch Acinetobacter calcoaceticus. Z. Allg. Mikrobiol. 17:419–427
    [Google Scholar]
  5. Babel W. 1984; Methanol-Assimilation durch ein acidophiles Bacterium der Gattung Acetobacter. Acta Biotechnol. 4:369–376
    [Google Scholar]
  6. Babel W., Hofmann K. H. 1977; Regulation des Pyruvat-und α-Ketoglutarat-Dehydrogenase-Komplexes eines fakultativ methylotrophen Bakteriums. Z. Allg. Mikrobiol. 17:403–406
    [Google Scholar]
  7. Babel W., Mothes G. 1978; Dissimilatorische Sequenzen in methylotrophen Bakterien. Z. Allg. Mikrobiol. 18:17–26
    [Google Scholar]
  8. Babel W., Muller R. 1977; Kinetik der Hexulose-6-phosphat-Synthase methylotropher Bakterien in vitro und in situ. Z. Allg. Mikrobiol. 17:175–182
    [Google Scholar]
  9. Babel W., Steudel A. 1977; Cytochromspektren methylotropher Bakterien. Z. Allg. Mikrobiol. 17:267–275
    [Google Scholar]
  10. Bertho A. 1932; Die Essiggârung. Ergeb. Enzymforsch. 1:231–269
    [Google Scholar]
  11. Carr J. G. 1968 Method for identifying acetic acid bacteria. 1–8 Gibbs B. M., Shapton D. A.ed Identification methods for microbiologists, part B Academic Press, Inc.; London:
    [Google Scholar]
  12. De Ley J., Gillis M., Swings J. 1984 Family VI. Acetobacteraceae Gillis and De Ley 1980, 23. 267–278 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  13. Drews G. 1974 Mikrobiologisches Praktikum. , 2nd ed.. Springer-Verlag; Berlin:
    [Google Scholar]
  14. Frateur J. 1950; Essai sur la systématique des Acetobacters. Cellule 53:287–392
    [Google Scholar]
  15. Gosselé F., Swings J., De Ley J. 1980; A rapid, simple and simultaneous detection of 2-keto-, 5-keto- and 2,5-diketogluconic acids by thin-layer chromatography in culture media of acetic acid bacteria. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1 Grig. Reihe C 1:178–181
    [Google Scholar]
  16. Gosselé F., Swings J., Kersters K., De Ley J. 1983; Numerical analysis of phenotypic features and protein gel electropherograms of Gluconobacter Asai 1935 emend, mut. char. Asai, Iizuka, and Komagata 1964. Int. J. Syst. Bacteriol. 33:65–81
    [Google Scholar]
  17. Gosselé F., Swings J., Kersters K., Pauwels P., De Ley J. 1983; Numerical analysis of phenotypic features and protein gel electrophoregrams of a wide variety of Acetobacter strains. Proposal for the improvement of the taxonomy of the genus Acetobacter Beijerinck 1898, 215. Syst. Appl. Microbiol. 4:338–368
    [Google Scholar]
  18. Gosselé F., van den Mooter M., Verdonck L., Swings J., De Ley J. 1981; The nitrogen requirements of Gluconobacter, Acetobacter and Frateuria. Antonie van Leeuwenhoek J. Microbiol. Serol. 47:289–296
    [Google Scholar]
  19. Green P. N., Bousfield I. J. 1982; A taxonomic study of some Gram-negative facultatively methylotrophic bacteria. J. Gen. Microbiol. 128:623–638
    [Google Scholar]
  20. Green P. N., Bousfield I. J. 1983; Emendation of Methylobacterium Patt, Cole, and Hanson 1976, Methylobacterium rhodinum (Heumann 1962) comb. nov. corrig., Methylobacterium radiotolerans (Ito and Iizuka 1971) comb, nov. corrig., and Methylobacterium mesophilicum (Austin and Goodfellow 1979) comb. nov. Int. J. Syst. Bacteriol. 33:875–877
    [Google Scholar]
  21. Janke A., Dickscheit R. 1967 Handbuch der mikrobiolo-gischen Laboratoriumstechnik. Verlag Theodor Steinkopff; Dresden, German Democratic Republic:
    [Google Scholar]
  22. Krehan M. 1931; Beiträge zur Physiologie und Systematik der Essigbakterien. Arch. Mikrobiol. 1:493–536
    [Google Scholar]
  23. Lang E., Lang H. 1972; Spezifische Farbreaktion zum direkten Nachweis der Ameisensäure. Z. Anal. Chem. 260:8–10
    [Google Scholar]
  24. Lapage S. P., Shelton J. E., Mitchell T. G. 1970 Media for the maintenance and preservation of bacteria. Norris J. R., Ribbons D. W.ed Methods in microbiology 3A Academic Press, Inc.; London:
    [Google Scholar]
  25. Leifson E. 1954; The flagellation and taxonomy of species of Acetobacter. Antonie van Leeuwenhoek J. Microbiol. Serol. 20:102–110
    [Google Scholar]
  26. Loffhagen N., Babel W. 1982; Regulation der PEP-Carboxylase des fakultativ methylotrophen Acetobacter sp. MB58. Z. Allg. Mikrobiol. 22:453–463
    [Google Scholar]
  27. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol. 3:208–218
    [Google Scholar]
  28. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5:109–118
    [Google Scholar]
  29. Mimura A., Wada M. 1978; The problems on the fermentation engineering of methanol assimilating microorganisms. Hakko Kogaku Kaishi 56:662–675
    [Google Scholar]
  30. Müller D. 1932; Der Abbau von Methylalkohol, Formaldehyd und Ameisensäure durch lebende und getötete Essigbakterien. Biochem. Z. 254:97–111
    [Google Scholar]
  31. Patt T. E., Cole G. C., Hanson R. S. 1976; Methylobacterium, a new genus of facultatively methylotrophic bacteria. Int. J. Syst. Bacteriol. 26:226–229
    [Google Scholar]
  32. Skerman V. B. D., McGowan V., Sneath P. H. A.ed 1980 Approved lists of bacterial names. Int. J. Syst. Bacteriol. 30:225–420
    [Google Scholar]
  33. Steudel A., Babel W. 1982; Das Cytochromkomplement des methylotrophen Essigsäurebakteriums MB58 in Abhängigkeit von den Wachstumsbedingungen. Z. Allg. Mikrobiol. 22:379–388
    [Google Scholar]
  34. Steudel A., Miethe D., Babel W. 1980; Bakterium MB58, ein methylotrophes “Essigsäurebakterium.”. Z. Allg. Mikrobiol. 20:663–672
    [Google Scholar]
  35. Swings J., De Ley J. 1981 The genera Gluconobacter and Acetobacter. 771–778 Starr M. P., Stolp H., Triiper H. G., Balows A., Schlegel H. G.ed The prokaryotes. A handbook on habitats, isolation and identification of bacteria Springer-Verlag; Berlin:
    [Google Scholar]
  36. Swings J., Gillis M., Kersters K., De Vos P., Gossele F., De Ley J. 1980; Frateuria, a new genus for “Acetobacter aurantius.”. Int. J. Syst. Bacteriol. 30:547–556
    [Google Scholar]
  37. Urakami T., Terao I., Nagai I. 1981 Process for producing bacterial single cell protein from methanol. 349–359 Dalton H.ed Microbial growth on Cj compounds Heyden; London:
    [Google Scholar]
  38. Yamada Y. 1983; Acetobacter xylinus sp. nov., nom. rev., for the cellulose-forming and cellulose-less, acetate-oxidizing acetic acid bacteria with the Q-lo system. J. Gen. Appl. Microbiol. 29:417–420
    [Google Scholar]
  39. Yamada Y., Kondo K. 1984; Gluconoacetobacter, a new subgenus comprising the acetate-oxidizing acetic acid bacteria with ubiquinone-10 in the genus Acetobacter. J. Gen. Appl. Microbiol. 30:297–303
    [Google Scholar]
  40. Yamada Y., Nunoda M., Ishikawa T., Tahara Y. 1981; The cellular fatty acid composition in acetic acid bacteria. J. Gen. Appl. Microbiol. 27:405–417
    [Google Scholar]
  41. Yamada Y., Okada Y., Kondo K. 1976; Isolation and characterization of “polarly flagellated intermediate strains” in acetic acid bacteria. J. Gen. Appl. Microbiol. 22:237–245
    [Google Scholar]
  42. Yordy J. R., Weaver T. L. 1977; Methylobacillus, a new genus of obligately methylotrophic bacteria. Int. J. Syst. Bacteriol. 27:247–255
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-36-2-317
Loading
/content/journal/ijsem/10.1099/00207713-36-2-317
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error