1887

Abstract

During a survey of the occurrence of spp. in cereal roots, we obtained 119 isolates which could not be identified as members of one of the three previously described species. These strains formed a very homogeneous group of N-fixing, microaerobic, motile, vibrioid, gram-negative rod-shaped organisms which formed a veillike pellicle in semisolid medium similar to that of spp. However, the new isolates differed from spp. by their smaller cell width (0.6 to 0.7 μm), variable flagellation (one to three flagella on one or both poles), moist brownish colonies, and broader pH and oxygen tolerance for nitrogenase activity. Organic acids were the preferred carbon sources, but glucose, galactose, -arabinose, mannitol, sorbitol, and glycerol were also used. The guanine-plus-cytosine content of the deoxyribonucleic acid was slightly lower than the guanine-plus-cytosine contents of spp. (66 to 67 mol%). Deoxyribonucleic acid hybridization experiments with 17 strains of the group showed 50 to 100% complementarity, while the levels of hybridization with the type strains of , and were 23, 15, and 6%, respectively. For these new isolates we propose a new genus, (the name refers to the habitat of the organisms, the roots of cereals, which are herbaceous seed-bearing plants). The type species is named after the place where it was first isolated. The type strain is strain Z67, which has been deposited in the American Type Culture Collection as strain ATCC 35892.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-36-1-86
1986-01-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/36/1/ijsem-36-1-86.html?itemId=/content/journal/ijsem/10.1099/00207713-36-1-86&mimeType=html&fmt=ahah

References

  1. App A., Santiago R., Daez C., Menguito C., Ventura W., Tirol A., Po J., Watanabe I., Datta S. K., Roger P. 1984; Estimation of the nitrogen balance for irrigated rice and the contribution of phototrophic nitrogen fixation. Field Crops Res. 9:17–28
    [Google Scholar]
  2. Baldani J. L, Baldani V. L. D., Sampaio M. J. A. M., Döbereiner J. 1984; A fourth Azospirillum species from cereal roots. An. Acad. Bras. Cien. 56:365
    [Google Scholar]
  3. Barraquio W. L., Ladha J. K., Watanabe I. 1983; Isolation and identification of N2-fixing Pseudomonas associated with wetland rice. Can. J. Microbiol. 29:867–873
    [Google Scholar]
  4. Boddey R. M., Döbereiner J. 1984 Nitrogen fixation associated with grasses and cereals. 277–313 Subba Rao N. S.ed Current developments in biological nitrogen fixation Oxford & IBH Publishing Co.; New Delhi, India:
    [Google Scholar]
  5. Cataldo D. A., Haroon M., Schrader L. E., Youngs V. L. 1975; Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil Sci. Plant Anal. 6:171–180
    [Google Scholar]
  6. Davis R. W., Botstein D., Roth J. R. 1980 Advanced bacterial genetics. A manual for genetic engineering. Cold Spring Harbor Laboratory; Cold Spring Harbor, N.Y.:
    [Google Scholar]
  7. De Smedt J., De Ley. 1977; Intra- and intergeneric similarities of Agrobacterium ribosomal ribonucleic acid cistrons. Int. J. Syst. Bacteriol. 27:220–240
    [Google Scholar]
  8. Döbereiner J. 1980 Forage grasses and grain crops. 535–555 Bergersen F. J.ed Methods for evaluation biological nitrogen fixation John Wiley & Sons, Ltd.; Chichester, United Kingdom:
    [Google Scholar]
  9. Döbereiner J. 1983; Ten years Azospirillum. Experientia Suppl. 48:9–23
    [Google Scholar]
  10. Döbereiner J., Marriel I. E., Nery M. 1976; Ecological distribution of Spirillum lipoferum Beijerinck. Can. J. Microbiol. 22:1464–1473
    [Google Scholar]
  11. Doestsch R. N. 1981 Determinative methods of light microscopy. 21–33 Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B.ed Manual of methods for general bacteriology American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  12. Elmerich C. 1984; Molecular biology and ecology of diazotrophs associated with non-leguminous plants. BioTechnology 2:967–978
    [Google Scholar]
  13. Falk E. C., Döbereiner J., Johnson J. L., Krieg N. R. 1985; Deoxyribonucleic acid of Azospirillum amazonense Magalhaes et al. 1984 and emendation of the description of the genus Azospirillum. Int. J. Syst. Bacteriol. 35:117–118
    [Google Scholar]
  14. Falk E. C., Johnson J. L., Baldani V. L. D., Döbereiner J., Krieg N. R. 1986; Deoxyribonucleic and ribonucleic acid homology studies of the genera Azospirillum and Conglomeromonas. Int. J. Syst. Bacteriol. 36:80–85
    [Google Scholar]
  15. Haahtela K., Kari K., Sundaman V. 1983; Nitrogenase activity (acetylene reduction) of root-associated, cold-climate Azospirillum, Enterobacter, Klebsiella, and Pseudomonas species during growth on various carbon sources and at various partial pressures of oxygen. Appl. Environ. Microbiol. 45:563–570
    [Google Scholar]
  16. Hall P. G., Krieg N. R. 1983; Swarming of Azospirillum bras dense on solid media. Can. J. Microbiol. 29:1591–1594
    [Google Scholar]
  17. International Journal of Systematic Bacteriology 1984; Validation of the publication of new names and new combinations previously effectively published outside the USB. List no. 15. Int. J. Syst. Bacteriol. 34:355–356
    [Google Scholar]
  18. Johnson J. L. 1981 Genetic characterization. 450–472 Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B.ed Manual of methods for general bacteriology American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  19. Krieg N. R. 1984 Aerobic/microaerophilic, motile, helical/vibroid gram-negative bacteria, section 2. 71–90 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  20. Krieg N. R., Döbereiner J. 1984 Genus Azospirillum Tarrand, Krieg and Döbereiner 1979, 79A1. (Effective publication Tarrand, Krieg and Döbereiner 1978, 978). 94–104 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  21. Krieg N. R., Hylemon P. B. 1976; The taxonomy of the chemoheterotrophic spirilla. Annu. Rev. Microbiol. 30:303–325
    [Google Scholar]
  22. Magalhaes F. M. M., Baldani J. I., Souto S. M., Kuykendall J. R., Döbereiner J. 1983; A new acid tolerant Azospirillum species. An. Acad. Bras. Cien. 55:417–430
    [Google Scholar]
  23. McClung C. R., Patriquin D. G., Davis R. E. 1983; Campylobacter nitrofigilis sp. nov., a nitrogen-fixing bacterium associated with roots of Spartina alterniflora Loisel. Int. J. Syst. Bacteriol. 33:605–612
    [Google Scholar]
  24. Neal J. R., Larson R. L. 1976; Acetylene reduction by bacteria isolated from the rhizosphere of wheat. Soil Biol. Biochem. 8:151–155
    [Google Scholar]
  25. Neyra C. A., van Berkum P. 1977; Nitrate reduction and nitrogenase activity in Spirillum lipoferum. Can. J. Microbiol. 23:306–310
    [Google Scholar]
  26. Okon Y., Hardy R. W. F. 1983 Developments in basic and applied biological nitrogen fixation. 5–54 Stewart F. C.ed Plant physiology: a treatise 8 Nitrogen metabolism;
    [Google Scholar]
  27. Patriquin D. G. 1982 New developments in grass-bacteria associations. 139–190 Subba Rao N. S.ed Advances in agricultural microbiology Oxford & IBH Publishing Co.; New Delhi, India:
    [Google Scholar]
  28. Patriquin D. G., Döbereiner J., Jain D. R. 1983; Sites and processes of association between diazotrophs and grasses. Can. J. Microbiol. 29:900–915
    [Google Scholar]
  29. Pedrosa F. O., Yates M. G. 1983; Nif mutants of Azospirillum brasilense: evidence for a nifA type regulation. Experientia Suppl. 48:66–77
    [Google Scholar]
  30. Seldin L., Dubnau D. 1985; Deoxyribonucleic acid homology among Bacillus poly myxa, Bacillus macerans, Bacillus azotofixans, and other nitrogen-fixing Bacillus strains. Int. J. Syst. Bacteriol. 35:151–154
    [Google Scholar]
  31. Seldin L., van Elsas J. D., Penido E. G. C. 1984; Bacillus azotofixans sp. nov., a nitrogen-fixing species from Brazilian soils and grass roots. Int. J. Syst. Bacteriol. 34:451–456
    [Google Scholar]
  32. Smibert R. M., Krieg N. R. 1981 General characterization. 409–443 Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R, Phillips G. B.ed Manual of methods for general bacteriology American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  33. Tarrand J. J., Krieg N. R., Döbereiner J. 1978; A taxonomy study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum lipoferum (Beijerinck) comb, nov. and Azospirillum brasilense sp. nov. Can. J. Microbiol. 24:967–980
    [Google Scholar]
  34. Umali-Garcia M., Hubell D. H., Gaskins M. H., Dazzo F. B. 1980; Association of Azospirillum with grass roots. Appl. Environ. Microbiol. 39:219–226
    [Google Scholar]
  35. van Berkum P., Bohlool B. B. 1980; Evaluation of nitrogen fixation by bacteria in association with roots of tropical grasses. Microbiol. Rev. 44:491–517
    [Google Scholar]
  36. Yoshinari T., Knowles R. 1976; Acetylene inhibition of nitrous oxide reduction by denitrifying bacteria. Biochem. Biophys. Res. Commun. 69:705–710
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-36-1-86
Loading
/content/journal/ijsem/10.1099/00207713-36-1-86
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error