1887

Abstract

Cell preparations of L1, Acholeplasma axanthum S743, BTS-39, 23-6, S6, and G230 were examined for 13 cytoplasmic enzyme activities involved in the salvage and interconversion of nucleobases, nucleosides, and 5′-mononucleotides. The unique pyrophosphate-dependent nucleoside kinase activity known only in B-PG9 was found in and . All the organisms could be divided into three groups based upon their patterns of purine salvage and interconversion activities. All the tested organisms, , and apparently subsp. lack the ability to synthesize guanylates from other purine mononucleotides, indicating that these members of the class Mollicutes can only salvage guanylates. The plant epiphytes and had an identical purine enzyme pattern which was different from those of all other members of the studied.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-35-4-497
1985-10-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/35/4/ijs-35-4-497.html?itemId=/content/journal/ijsem/10.1099/00207713-35-4-497&mimeType=html&fmt=ahah

References

  1. Beaman K. D., Pollack J. D. 1981; Adenylate energy charge in Acholeplasma laidlawii . J. Bacteriol 146:1055–1058
    [Google Scholar]
  2. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem 72:248–254
    [Google Scholar]
  3. Chang C. J., Chen T. A. 1982; Spiroplasmas: cultivation in chemically defined medium. Science 215:1121–1122
    [Google Scholar]
  4. Davis R. E., Lee I.-M., Worley J. F. 1981; Spiroplasma floricola, a new species isolated from surfaces of the tulip tree, Liriodendron tulipifera L. Int. J. Syst. Bacteriol 31:456–464
    [Google Scholar]
  5. Greenaway S. D., Wase D. A. J. 1982; Two chemically defined media for the growth of Acholeplasma laidlawii . A. Biotechnol. Lett 4:217–222
    [Google Scholar]
  6. Hamet H., Bonissol C., Carter P. 1980; Enzymatic activities on purine and pyrimidine metabolism in nine mycoplasma species contaminating cell cultures. Clin. Chim. Acta 103:15–22
    [Google Scholar]
  7. Johnson L. A., Gordon R. B., Emmerson B. T. 1979; Inactivation of hypoxanthine guanine phosphoribosyltransferase by guanosine dialdehyde: an active site directed inhibitor. Biochem. Med 22:33–42
    [Google Scholar]
  8. Liska B., Smith P. F. 1974; Requirements of Acholeplasma laidlawii A, strain LA 1, for nucleic acid precursors. Folia Microbiol 19:107–117
    [Google Scholar]
  9. McCoy R. E., Basham H. G., Tully J. G., Rose D. L., Carle P., Bove J. M. 1983; Acholeplasma florum, a new species isolated from plants. Int. J. Syst. Bacteriol 34:11–15
    [Google Scholar]
  10. Mclvor R. S., Kenny G. E. 1978; Differences in incorporation of nucleic acid bases and nucleosides by various Mycoplasma and Acholeplasma species. J. Bacteriol 135:483–489
    [Google Scholar]
  11. Mitchell A., Finch L. R. 1977; Pathways of nucleotide biosynthesis in Mycoplasma mycoides subsp. mycoides . J. Bacteriol 130:1047–1054
    [Google Scholar]
  12. Mitchell A., Sin I. L., Finch L. R. 1978; Enzymes of purine metabolism in Mycoplasma mycoides subsp. mycoides . J. Bacteriol 134:706–712
    [Google Scholar]
  13. Pollack J. D. 1975; Localization of reduced nicotinamide adenine dinucleotide oxidase activity in Acholeplasma and Mycoplasma . Int. J. Syst. Bacteriol 25:108–113
    [Google Scholar]
  14. Pollack J. D. 1983; Localization of enzymes in mycoplasmas: preparatory steps. Methods Mycoplasmol 1:327–332
    [Google Scholar]
  15. Pollack J. D., Beaman K. D., Robertson J. A. 1984; Synthesis of lipids from acetate is not characteristic of Acholeplasma or Ureaplasma species. Int. J. Syst. Bacteriol 34:124–126
    [Google Scholar]
  16. Pollack J. D., Tryon V. V., Beaman K. D. 1983; The metabolic pathways of Acholeplasma and Mycoplasma: an overview. Yale J. Biol. Med 56:709–716
    [Google Scholar]
  17. Randerath K., Randerath E. 1964; Ion-exchange chromatography of nucleotides on poly-(ethyleneimine)-ceilulose thin layers. J. Chromatogr 16:111–125
    [Google Scholar]
  18. Razin S. 1962; Nucleic acid precursor requirement of Mycoplasma laidlawii . J. Gen. Microbiol 28:243–250
    [Google Scholar]
  19. Razin S., Cohen A. 1963; Nutritional requirements and metabolism of Mycoplasma laidlawii . J. Gen. Microbiol 30:141–154
    [Google Scholar]
  20. Rodwell A. W. 1967; The nutrition and metabolism of mycoplasma: progress and problems. Ann. N.Y. Acad. Sci 143:88–109
    [Google Scholar]
  21. Smith D. W., Hanawalt P. C. 1968; Macromoleeular synthesis and thymineless death in Mycoplasma laidlawii B. J. Bacteriol 96:2066–2076
    [Google Scholar]
  22. Stephens E. B., Aulakh G. S., McCoy R. E., Rose D. L., Tully J. G., Barile M. F. 1981; Lack of genetic relatedness among animal and plant acholeplasmas by nucleic acid hybridization. Curr. Microbiol 5:367–370
    [Google Scholar]
  23. Tourtellotte M. E., Morowitz H. J., Kasimer P. 1961; Denned medium for Mycoplasma laidlawii . J. Bacteriol 88:11–15
    [Google Scholar]
  24. Tryon V. V., Pollack J. D. 1984; Purine metabolism in Acholeplasma laidlawii B: novel PPi-dependent nucleoside kinase activity. J. Bacteriol 159:265–270
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-35-4-497
Loading
/content/journal/ijsem/10.1099/00207713-35-4-497
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error