1887

Abstract

A total of 65 strains of appendaged or prosthecate, budding bacteria from our culture collection were selected for a study of deoxyribonucleic acid (DNA) base composition and nucleotide distribution. These strains represented 11 genera, including 4 genera of hyphal, budding bacteria which have not been formally described yet. The DNA species were thermally denatured, and absorbance-temperature profiles were recorded. The midpoints, widths, and asymmetries of the melting transitions were determined. When the DNA base compositions and nucleotide distributions were plotted on a dissimilarity map, it became evident that the strains of each genus occupied a distinct area. The distribution of strains within such an area indicated the degree of heterogeneity of a genus. When 16 strains were analyzed, they formed five clusters within their generic area. These clusters correlated well with groups which had been previously established by DNA base composition analyses, by DNA-DNA homology studies, and by numerical taxonomy. Nine of the strains investigated were distinguished by melting profiles which were skewed uniquely to the left.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-35-3-260
1985-07-01
2022-11-30
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/35/3/ijs-35-3-260.html?itemId=/content/journal/ijsem/10.1099/00207713-35-3-260&mimeType=html&fmt=ahah

References

  1. Attwood M. M., Harder W. 1973; The metabolism of organic carbon compounds in hyphomicrobia: metabolism of C2 compounds. Antonie van Leeuwenhoek J. Microbiol. Serol 39:357
    [Google Scholar]
  2. Bauld J., Staley J. T. 1976; Planctomyces maris sp. nov.: a marine isolate of the Planctomyces-Blastocaulis group of budding bacteria. J. Gen. Microbiol 97:45–55
    [Google Scholar]
  3. Cohen-Bazire G., Sistrom W. R., Stanier R. Y. 1957; Kinetic studies of pigment synthesis by nonsulfur purple bacteria. J. Cell. Comp. Physiol 49:25–68
    [Google Scholar]
  4. Crothers D. M., Kallenbach N. R., Zimm B. H. 1965; The melting transition of low molecular-weight DNA: theory and experiment. J. Mol. Biol 11:802–820
    [Google Scholar]
  5. Cryer D. R., Eccleshall R., Marmur J. 1975; Isolation of yeast DNA. Methods Cell Biol 12:39–44
    [Google Scholar]
  6. De Ley J. 1969; Compositional nucleotide distribution and the theoretical prediction of homology in bacterial DNA. J. Theor. Biol 22:89–116
    [Google Scholar]
  7. De Ley J. 1970; Reexamination of the association between melting point, buoyant density and chemical base composition of deoxyribonucleic acid. J. Bacteriol 101:738–754
    [Google Scholar]
  8. Eckhardt W. F. E., Roggentin P., Hirsch P. 1979; Fatty acid composition of various hyphal budding bacteria. Arch. Microbiol 120:81–85
    [Google Scholar]
  9. Gebers R. 1981; Enrichment, isolation, and emended description of Pedomicrobium ferrugineum Aristovskaya and Pedomicrobium manganicum Aristovskaya. Int. J. Syst. Bacteriol 31:302–316
    [Google Scholar]
  10. Gebers R., Mandel M., Hirsch P. 1981; Deoxyribonucleic acid base composition and nucleotide distribution of Pedomicrobium spp. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig. Reihe C 2:332–338
    [Google Scholar]
  11. Gebers R., Moore R. L., Hirsch P. 1981; DNA/DNA reassociation studies on the genus Pedomicrobium . FEMS Microbiol. Lett 11:283–286
    [Google Scholar]
  12. Gebers R., Moore R. L., Hirsch P. 1984; Physiological properties and DNA-DNA homologies of Hyphomonas polymorpha Hyphomonas neptunium . Syst. Appl. Microbiol 5:510–517
    [Google Scholar]
  13. Harder W., Attwood M. M. 1973; The metabolism of organic carbon compounds in hyphomicrobia: pathway of carbon assimilation during growth on methanol. Antonie van Leeuwenhoek J. Microbiol. Serol 39:358
    [Google Scholar]
  14. Havenner J. A., McCardell B. A., Weiner R. M. 1979; Development of defined, minimal, and complete media for the growth of Hyphomicrobium neptunium . Appl. Environ. Microbiol 38:18–23
    [Google Scholar]
  15. Hirsch P. 1968; Biology of budding bacteria. IV. Epicellular deposition of iron by aquatic budding bacteria. Arch. Mikrobiol 60:201–216
    [Google Scholar]
  16. Hirsch P. 1974; Budding bacteria. Annu. Rev. Microbiol 28:391–444
    [Google Scholar]
  17. Hirsch P. 1980; Distribution and pure culture studies of morphologically distinct solar lake microorganisms, p. 41–60 Nissenbaum A. Hypersaline brines and evaporitic environments. Elsevier/North-Holland Scientific Publishing Co.; Amsterdam:
    [Google Scholar]
  18. Hirsch P., Conti S. F. 1964; Biology of budding bacteria. I. Enrichment, isolation and morphology of Hyphomicrobium spp. Arch. Mikrobiol 48:339–357
    [Google Scholar]
  19. Hirsch P., Conti S. F. 1964; Biology of budding bacteria, II. Growth and nutrition of Hyphomicrobium spp. Arch. Mikrobiol 48:358–367
    [Google Scholar]
  20. Hirsch P., Müller M., Schlesner H. 1977; New aquatic budding and prosthecate bacteria and their taxonomic position. Soc. Appl. Bacteriol. Symp. Ser 6:107–133
    [Google Scholar]
  21. Hirsch P., Rheinheimer G. 1968; Biology of budding bacteria. V. Budding bacteria in aquatic habitats: occurrence, enrichment and isolation. Arch. Mikrobiol 62:289–306
    [Google Scholar]
  22. Jannasch H. W., Wirsen C. O. 1981; Morphological survey of microbial mats near deep-sea thermal vents. Appl. Environ. Microbiol 41:528–538
    [Google Scholar]
  23. Kingma-Boltjes T. Y. 1936; über Hyphomicrobium vulgäre Stutzer et Hartleb. Arch. Mikrobiol 7:188–205
    [Google Scholar]
  24. Leifson E. 1964; Hyphomicrobium neptunium sp. n. Antonie van Leeuwenhoek J. Microbiol. Serol 30:249–256
    [Google Scholar]
  25. Lyman J., Fleming R. H. 1940; Composition of seawater. J. Mar. Res 3:134–146
    [Google Scholar]
  26. Mandel M., Hirsch P., Conti S. F. 1972; Deoxyribonucleic acid base compositions of hyphomicrobia. Arch. Mikrobiol 81:289–294
    [Google Scholar]
  27. Mandel M., Igambi L., Bergendahl J., Dodsen M. L. Jr., Scheltgen E. 1970; Correlation of melting temperature and cesium chloride buoyant density of bacterial deoxyribonucleic acid. J. Bacteriol 101:333–338
    [Google Scholar]
  28. Mandel M., Leadbetter E. R., Pfennig N., Trüper H. G. 1971; Deoxyribonucleic acid base compositions of phototrophic bacteria. Int. J. Syst. Bacteriol 21:222–230
    [Google Scholar]
  29. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol 3:208–218
    [Google Scholar]
  30. Matzen N., Hirsch P. 1982; Improved growth conditions for Hyphomicrobium sp. B-522 and two additional strains. Arch. Microbiol 131:32–35
    [Google Scholar]
  31. Mevius W. Jr 1953; Beiträge zur Kenntnis von Hyphomicrobium vulgäre Stutzer et Hartleb. Arch. Mikrobiol 19:1–29
    [Google Scholar]
  32. Meyer S. A., Schleifer K. H. 1975; Rapid procedure for the approximate determination of the deoxyribonucleic acid base composition of micrococci, staphylococci, and other bacteria. Int. J. Syst. Bacteriol 25:383–385
    [Google Scholar]
  33. Moore R. L. 1977; Ribosomal ribonucleic acid cistron homologies among Hyphomicrobium and various other bacteria. Can. J. Microbiol 23:478–481
    [Google Scholar]
  34. Moore R. L., Hirsch P. 1972; Deoxyribonucleic acid base sequence homologies of some budding and prosthecate bacteria. J. Bacteriol 110:256–261
    [Google Scholar]
  35. Moore R. L., Hirsch P. 1973; Nuclear apparatus of Hyphomicrobium . J. Bacteriol 116:1447–1455
    [Google Scholar]
  36. Moore R. L., Staley J. T. 1976; Deoxyribonucleic acid homology of Prosthecomicrobium Ancalomicrobium strains. Int. J. Syst. Bacteriol 26:283–285
    [Google Scholar]
  37. Moore R. L., Weiner R. M., Gebers R. 1984; Genus Hyphomonas Pongratz 1957 nom. rev. emend., Hyphomonas polymorpha Pongratz 1957 nom. rev. emend., and Hyphomonas neptunium (Leifson 1964) comb. nov. emend. Hyphomic-robium neptunium . Int. J. Syst. Bacteriol 34:71–73
    [Google Scholar]
  38. Pfennig N. 1965; Anreicherungskulturen für rote und grüne Schwefelbakterien. Zentralbl. Bakteriol. Parasitenkd. Infek-tionskr. Hyg. Abt. 1 Suppl 1:179–504
    [Google Scholar]
  39. Pfennig N. 1969; Rhodopseudomonas acidophila sp. n., a new species of the budding purple nonsulfur bacteria. J. Bacteriol 99:597–602
    [Google Scholar]
  40. Pongratz E. 1957; D’une bactérie pédiculée isolée d'un pus de sinus. Schweiz. Z. Pathol. Bakteriol 20:593–608
    [Google Scholar]
  41. Potts L. E., Dow C. S., Avery R. J. 1980; The genome of Rhodomicrobium vannielii, a polymorphic prosthecate bacterium. J. Gen. Microbiol 117:501–507
    [Google Scholar]
  42. Powell D. M., Roberson B. S., Weiner R. M. 1980; Serological relationships among budding, prosthecate bacteria. Can. J. Microbiol 26:209–217
    [Google Scholar]
  43. Schlesner H., Hirsch P. 1984; Assignment of ATCC 27377 to Pirella gen. nov. as Pirella staleyi comb. nov. Int. J. Syst. Bacteriol 34:492–195
    [Google Scholar]
  44. Schwinghamer E. A. 1980; A method for improved lysis of some Gram-negative bacteria. FEMS Microbiol. Lett 7:157–162
    [Google Scholar]
  45. Staley J. T. 1968; Prosthecomicrobium Ancalomicrobium: new freshwater prosthecate bacteria. J. Bacteriol 95:1921–1942
    [Google Scholar]
  46. Staley J. T. 1973; Budding bacteria of the Pasteuria-Blasto-bacter group. Can. J. Microbiol 19:609–614
    [Google Scholar]
  47. Staley J. T., Mandel M. 1973; Deoxyribonucleic acid base composition of Prosthecomicrobium Ancalomicrobium strains. Int. J. Syst. Bacteriol 23:271–273
    [Google Scholar]
  48. Staley J. T., Marshall K. C., Skerman V. B. D. 1980; Budding and prosthecate bacteria from freshwater habitats of various trophic states. Microb. Ecol 5:245–251
    [Google Scholar]
  49. Tyler P. A., Marshall K. C. 1967; Pleomorphy in stalked, budding bacteria. J. Bacteriol 93:1132–1136
    [Google Scholar]
  50. Tyler P. A., Marshall K. C. 1967; Microbial oxidation of manganese in hydro-electric pipelines. Antonie van Leeu-wenhoek J. Microbiol. Serol 33:171–183
    [Google Scholar]
  51. Vasil’eva L. V. 1970; Ein sternförmiger Boden-Mikroorganismus. Izv. Akad. Nauk SSSR Ser. Biol 2:308–310 Translated from Russian
    [Google Scholar]
  52. Weiner R. M., Hussong D., Colwell R. R. 1980; An estuarine agar medium for enumeration of aerobic heterotrophic bacteria associated with water, sediment, and shellfish. Can. J. Microbiol 26:1366–1369
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-35-3-260
Loading
/content/journal/ijsem/10.1099/00207713-35-3-260
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error