1887

Abstract

After enrichment in a medium containing sea water and methanol, 42 methylotrophic strains were isolated. All of these strains were gram-negative, strictly aerobic, motile, rod-shaped organisms that required vitamin B. None grew on methane or on complex nutrient media supplemented or not supplemented with NaCl. All but 2 strains grew on methanol, methylamine, and fructose, 17 strains grew on dimethylamine, and 10 strains grew on trimethylamine. Fructose was the only multicarbon compound tested that was used as a growth substrate. All 11 strains tested used the ribulose monophosphate pathway of carbon assimilation. Depending on the strain, methylamine was oxidized either through a methylamine dehydrogenase or through a methylglut-amate dehydrogenase. The mean guanine-plus-cytosine content of 33 strains was 43 mol%. Based on deoxyribonucleic acid-deoxyribonucleic acid hybridization, two related groups were identified among 11 strains examined. We propose a new genus, , with two species, (type species) and . There was no significant deoxyribonucleic acid hybridization between Methylophaga and the terrestrial obligate methanol utilizers tested. The type strains of . and . are strains ATCC 35842 (= NCMB 2244) and ATCC 33146 (= NCMB 2163), respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-35-2-131
1985-04-01
2022-08-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/35/2/ijs-35-2-131.html?itemId=/content/journal/ijsem/10.1099/00207713-35-2-131&mimeType=html&fmt=ahah

References

  1. Amano Y., Sawada H., Takada N., Terui G. 1975; Isolation and characterization of Methylomonas methanolica nov. sp. J. Ferment. Technol 53:315–326
    [Google Scholar]
  2. Anthony C. 1982 The biochemistry of methylotrophs Academic Press, Inc.; London:
    [Google Scholar]
  3. Anthony C., Zatman L. J. 1964; The microbial oxidation of methanol. I. Isolation and properties of Pseudomonas sp. M27. Biochem. J 92:609–613
    [Google Scholar]
  4. Anthony C., Zatman L. J. 1967; The microbial oxidation of methanol. The prosthetic group of alcohol dehydrogenase of Pseudomonas sp. M27: a new oxidoreductase prosthetic group. Biochem. J 104:960–969
    [Google Scholar]
  5. Attwood M. M., Harder W. 1972; A rapid and specific enrichment procedure for Hyphomicrobium spp. Antonie van Leeuwenhoek J. Microbiol. Serol 38:369–378
    [Google Scholar]
  6. Baumann L., Baumann P., Mandel M., Allen R. D. 1972; Taxonomy of aerobic marine eubacteria. J. Bacteriol 110:402–429
    [Google Scholar]
  7. Bonner T. I., Brenner D. J., Neufeld B. R., Britten R. J. 1983; Reduction in the rate of DNA reassociation by sequence divergence. J. Mol. Biol 81:123–135
    [Google Scholar]
  8. Brenner D. J. 1978; Characterization and clinical identification of Enterobacteriaceae by DNA hybridization. Prog. Clin. Pathol 7:71–117
    [Google Scholar]
  9. Brenner D. J., McWhorter A. C., Leete Knudson J. K., Steigerwalt A. G. 1982; Escherichia vulneris: a new species of Enterobacteriaceae associated with human wounds. J. Clin. Microbiol 15:1133–1140
    [Google Scholar]
  10. Byrom D. 1980; Taxonomy of methylotrophs: a reappraisal. 279–284 Dalton H. Microbial growth on C1 compoundsProceedings of the 3rd International Symposium on Microbial Growth on C1 CompoundsHeyden, London
    [Google Scholar]
  11. Costerton J. W., Ingram J. M., Chenig K. J. 1974; Structure and function of the cell envelope of gram-negative bacteria. Bacteriol. Rev 38:87–110
    [Google Scholar]
  12. Crosa J. H., Brenner D. J., Falkow S. 1973; Use of a single-strand-specific nuclease for analysis of bacterial deoxy-ribonucleic acid homo- and heteroduplexes. J. Bacteriol 115:904–911
    [Google Scholar]
  13. De Voe I. W., Oginsky E. L. 1969; Antagonistic effect of monovalent cations in maintenance of cellular integrity of a marine bacterium. J. Bacteriol 98:1355–1367
    [Google Scholar]
  14. Dostalek M., Molin N. 1975; Studies of biomass production of methanol oxidizing bacteria. 385–401 Tannenbaum S. R., Wang D. I. C. Single cell protein II The MIT Press; Cambridge, Mass:
    [Google Scholar]
  15. Eady R. R., Large P. J. 1968; Purification and properties of an amine dehydrogenase from Pseudomonas AM1 and its role in growth of methylamine. Biochem. J 106:245–255
    [Google Scholar]
  16. Ferenci T., Strøm T., Quayle J. R. 1974; Purification and properties of 3-hexulose phosphate synthase and phospho-3-hexuloisomerase from Methylococcus capsulatus. Biochem. J 144:477–486
    [Google Scholar]
  17. Foster J. W., Davis R. H. 1966; A methane-dependent coccus, with notes on classification and nomenclature of obligate methane-utilizing bacteria. J. Bacteriol 91:1924–1931
    [Google Scholar]
  18. Frehel C., Robbe P., Tinelli R., Ryter A. 1982; Relationship between biochemical and cytochemical results obtained on Bacillus megaterium and Bacillus subtilis cell-wall polysaccha-rides. J. Ultrastruct. Res 81:78–87
    [Google Scholar]
  19. Frehel C., Ryter A. 1982; Electron microscopic cytochemical study of cell-wall polysaccharides in Bacillus subtilis and two strains of Bacillus megaterium. J. Ultrastruct. Res 81:66–77
    [Google Scholar]
  20. Gavini F., Izard D., Leclerc H., Desmonceaux M., Gayral J. P. 1980; Carbon source assimilation test: comparison between a conventional method and a microtechnic (API) in study of Enterobacteriaceae. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig. Reihe C 1:182–187
    [Google Scholar]
  21. Green P. N., Bousfield I. J. 1982; A taxonomic study of some gram-negative facultatively methylotrophic bacteria. J. Gen. Microbiol 128:623–638
    [Google Scholar]
  22. Grimont P. A. D., Grimont F., Farmer J. J. III, Asbury M. A. 1981; Cedecea davisae gen. nov., sp. nov. and Cedecea lapagei sp. nov., new Enterobacteriaceae from clinical specimens. Int. J. Syst. Bacteriol 31:317–326
    [Google Scholar]
  23. Herbert D., Phipps P. J., Strange R. E. 1971; Chemical analysis in microbial cells. 209–344 Norris J. R., Ribbons D. W. Methods in microbiology 5B Academic Press, Inc; London:
    [Google Scholar]
  24. Hersh L. B., Peterson J. A., Thompson A. A. 1971; An N-methylglutamate dehydrogenase from Pseudomonas MA. Arch. Biochem. Biophys 145:115–120
    [Google Scholar]
  25. Hirsch P. 1974; Budding bacteria. Annu. Rev. Microbiol 28:391–144
    [Google Scholar]
  26. Hohnloser W., Lingens F., Präve P. 1978; Characterization of a new methylotrophic strain, Methvlomonas clara. Eur. J. Appl. Microbiol 6:167–179
    [Google Scholar]
  27. Hontebeyrie M., Gasser F. 1977; Deoxyribonucleic acid homologies in the genus Leuconostoc. Int. J. Syst. Bacteriol 27:9–14
    [Google Scholar]
  28. International Journal of Systematic Bacteriology 1984; Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List no. 15. Int. J. Syst. Bacteriol 34:355–356
    [Google Scholar]
  29. Johnson J. L., Phelps C. F., Cummins C. S., London J., Gasser F. 1980; Taxonomy of the Lactobacillus acidophilus group. Int. J. Syst. Bacteriol 30:53–68
    [Google Scholar]
  30. Kouno K., Oki T., Nomura H., Ozaki A. 1973; Isolation of a new methanol-utilizing bacteria and its thiamine requirement for growth. J. Gen. Appl. Microbiol 19:11–21
    [Google Scholar]
  31. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685
    [Google Scholar]
  32. Large P. J., Quayle J. R. 1963; Microbial growth on C1 compounds. V. Enzyme activities in extracts of Pseudomonas AM1. Biochem. J 87:386–396
    [Google Scholar]
  33. Loginova N. V., Trotsenko Y. A. 1981; Characteristics of the obligate methylotroph Methylophilus methanolovorus. Microbiology (USSR) 50:13–18 Translated from Russian
    [Google Scholar]
  34. Ogata K., Izumi Y., Kawamori M., Asano Y., Tani Y. 1977; Amino acid formation by methanol utilizing bacteria. J. Ferment. Technol 55:444–451
    [Google Scholar]
  35. Peel D., Quayle J. R. 1961; Microbial growth on C1 compounds. I. Isolation and characterization of Pseudomonas AM1. Biochem. J 81:465–469
    [Google Scholar]
  36. Pfennig N. 1965; Anreicherungkulturen fur rote und griine Schwefelbakterien. Zentralbl. Bakteriol. Parasitenkd. Infektionsk. Hyg. Abt. 1 Suppl 1:179–189
    [Google Scholar]
  37. Rambourg A. 1969; Localisation ultrastructurale et nature du matériel coloré au niveau de la surface cellulaire par le mélange chromique phosphotungstique. J. Microsc. (Paris) 8:325–342
    [Google Scholar]
  38. Rayman M. K., MacLeod R. A. 1975; Interaction of Mg2+ with peptidoglycan and its relation to the prevention of lysis of a marine pseudomonad. J. Bacteriol 122:650–659
    [Google Scholar]
  39. Reichelt J. L., Baumann P. 1974; Effect of sodium chloride on growth of heterotrophic marine bacteria. Arch. Microbiol 97:329–345
    [Google Scholar]
  40. Rock J. S., Goldberg I., Ben-Bassat A., Mateles R. I. 1976; Isolation and characterization of two methanol utilizing bacteria. Agric. Biol. Chem 40:2129–2135
    [Google Scholar]
  41. Rokem J. S., Reichler J., Goldberg I. 1978; Electron microscopy of methanol-utilizing bacteria. Antonie van Leeuwenhoek J. Microbiol. Serol 44:123–127
    [Google Scholar]
  42. Roland J. C., Lembi C. A., Horre D. J. 1972; Phospho-tungstic acid-chromic acid as a selective electron dense stain for plasma membranes of plant cells. Stain Technol 47:195–200
    [Google Scholar]
  43. Romanovskaya V. A., Malashenko Y. R., Bogachenko V. N. 1978; Corrected diagnosis of the genera and species of methane-utilizing bacteria. Microbiology (USSR) 47:96–103 Translated from Russian
    [Google Scholar]
  44. Rousseau M., Hermier J. 1975; Localisation en microscopie électronique des polysaccharides de la paroi chez les bactéries en sporulation. J. Microsc. Biol. Cell 23:237–248
    [Google Scholar]
  45. Ryter A., Kellenberger E. 1958; Etude en microscope électronique de plasma contenant de l’acide désoxyribonu-cléique. I. Les nucleotides des bacteries en croissance active. Z. Naturforsch 13:597–605
    [Google Scholar]
  46. Sahm H., Wagner F. 1975; Isolation and characterization of an obligate methanol-utilizing bacterium, Methylomonas M15. Eur. J. Appl. Microbiol 2:147–158
    [Google Scholar]
  47. Sedmak J. J., Grossberg S. E. 1977; A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal. Biochem 79:544–552
    [Google Scholar]
  48. Skerman V. B. D., McGowan V., Sneath P. H. A. 1980; Approved lists of bacterial names. Int. J. Syst. Bacteriol 30:225–120
    [Google Scholar]
  49. Strand S. E., Listrom M. E. 1984; Characterization of a new marine methylotroph. FEMS Microbiol. Lett 21:247–251
    [Google Scholar]
  50. Suzuki M., Kühn I., Berglund A., Unden A., Heden C. G. 1977; Identification of a new methanol-utilizing bacterium and its characteristic responses to some chemicals. J. Ferment. Technol 55:459–465
    [Google Scholar]
  51. Taylor I. J. 1977; Carbon assimilation and oxidation by Methylophilus methylotrophus—the ICI SCP organism. 52–54 Skryabin G. K., Ivanov M. V., Kondratjeva E. N., Zavarzin G. A., Trotsenko Y., Nesterov A. I. Microbial growth on C1 compoundsProceedings of the 2nd International Symposium on Microbial Growth on C1 Compounds USSR Academy of Sciences; Moscow:
    [Google Scholar]
  52. Thiery J. P. 1967; Mise en évidence des polysaccharides sur coupes fines en microscopie électronique. J. Microsc. (Paris) 6:987–1018
    [Google Scholar]
  53. Urakami T., Komagata K. 1981; Electrophoretic comparison of enzymes in the gram-negative methanol utilizing bacteria. J. Gen. Appl. Microbiol 27:381–403
    [Google Scholar]
  54. Van Landschoot A., De Ley J. 1983; Intra- and intergeneric similarities of the rRNA cistrons of Alteromonas, Marinomonas (gen. nov.) and some other gram-negative bacteria. J. Gen. Microbiol 129:3057–3074
    [Google Scholar]
  55. Whitehouse R. L. S., Benichou J. C., Ryter A. 1977; Procedure for the longitudinal orientation of rod shaped bacteria and production of high cell density of procaryotic and eucaryotic cells in thin sections for electron microscopy. Biol. Cell 30:155–158
    [Google Scholar]
  56. Whittenbury R., Krieg N. R. 1984; Genus II, Methylomonas (ex Leadbetter 1974) nom. rev.. 260 Krieg N. R., Holt J. G. Bergey’s manual of systematic bacteriology The Williams & Wilkins Co; Baltimore:
    [Google Scholar]
  57. Yamamoto M., Iwaki H., Kouno K., Inui T. 1980; Identification of marine methanol-utilizing bacteria. J. Ferment. Technol 58:99–106
    [Google Scholar]
  58. Yamamoto M., Seriu Y., Kouno K., Okamoto R., Inui T. 1978; Isolation and characterization of marine methanol-utilizing bacteria. J. Ferment. Technol 56:451–458
    [Google Scholar]
  59. Yordy J. R., Weaver T. L. 1977; Methylobacillus: a new genus of obligately methylotrophic bacteria. Int. J. Syst. Bacteriol 27:247–255
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-35-2-131
Loading
/content/journal/ijsem/10.1099/00207713-35-2-131
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error