1887

Abstract

The taxonomy of the genus has undergone many changes during the past 40 years. Based on phenotypic properties, this genus has changed from numerous species to one species containing five subspecies and then to a single species, , with no subspecies. The present study was designed to test the validity of this latter view. Nucleotide sequence similarites were determined for 54 strains of by using an S1 nuclease procedure. Three distinct deoxyribonucleic acid homology groups were obtained. The average level of relatedness among these groups was 16%. Homology group 1 contained 32 strains and included the type strain of . and the type strains of all previously recognized subspecies. Homology group II contained 12 strains that had an intragroup homology level of 44 to 87% (average, 65%) with reference strain IFO 3264. Homology group III contained six strains with an average intragroup homology level of 86% with reference strain IFO 3276a. Reference strains IFO 3264 and IFO 3276 were previously recognized as . . The remaining four strains of had from 0 to 23% homology with reference strains used to delineate the three homology groups. Although these data show that the genus is composed of at least three species, they also support elimination of the previously designated subspecies. Three isolates implicated in pink disease of pineapples were shown either not to be gluconobacters or to be mixed with gluconobacters. The occurrence of colony variants within many of the strains is described, and the significance of this observation is discussed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-35-1-79
1985-01-01
2023-01-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/35/1/ijs-35-1-79.html?itemId=/content/journal/ijsem/10.1099/00207713-35-1-79&mimeType=html&fmt=ahah

References

  1. Ameyama M. 1975; Gluconobacter oxydans subspecies sphaericus, new subspecies isolated from grapes. Int. J. Syst. Bacteriol 23:365–370
    [Google Scholar]
  2. Asai T. 1935; A systematic study of alcohol- and carbohydrate-oxidizing bacteria isolated from fruits and a new classification of oxidizing bacteria III. Nippon Nogei Kagaku Kaishi 11:674–708
    [Google Scholar]
  3. Asai T. 1935; A systematic study of alcohol- and carbohydrate-oxidizing bacteria isolated from fruits and a new classification of oxidizing bacteria III. Nippon Nogei Kagaku Kaishi 11:610–620
    [Google Scholar]
  4. Asai T. 1935; A systematic study of alcohol- and carbohydrate-oxidizing bacteria isolated from fruits and a new classification of oxidizing bacteria III. Nippon Nogei Kagaku Kaishi 11:499–513
    [Google Scholar]
  5. Asai T. 1935; A systematic study of alcohol- and carbohydrate-oxidizing bacteria isolated from fruits and a new classification of oxidizing bacteria III. Nippon Nogei Kagaku Kaishi 11:377–390
    [Google Scholar]
  6. Asai T. 1968; Acetic acid bacteria. University of Tokyo Press; Tokyo:
    [Google Scholar]
  7. Asai T., Iizuka H., Komagata K. 1964; The flagellation and taxonomy of genera Gluconobacter and Acetobacter with reference to the existence of intermediate strains. J. Gen. Appi. Microbiol 10:95–126
    [Google Scholar]
  8. Asai T., Shoda K. 1958; The taxonomy of Acetobacter and allied oxidative bacteria. J. Gen. Appl. Microbiol 4:289–311
    [Google Scholar]
  9. Carr J. G., Passmore S. M. 1979; Methods for identifying acetic acid bacteria. 33–47 Skinner F. A., Lovelock D. W. Identification methods for microbiologists, 2. Academic Press, Inc.; London:
    [Google Scholar]
  10. Carr J. G., Shimwell J. L. 1961; The acetic acid bacteria,1941-1961: a critical review. Antonie van Leeuwenhoek J. Microbiol. Serol 27:386–400
    [Google Scholar]
  11. De Ley J. 1961; Comparative carbohydrate metabolism and a proposal for the phylogenetic relationship of the acetic acid bacteria. J. Gen. Microbiol 24:31–50
    [Google Scholar]
  12. De Ley J., Frateur J. 1974; Gluconobacter Asai 1935. 251–253 Buchanan R. E., Gibbons N. E. Bergey’s manual of determinative bacteriology, 8. The Williams & Wilkins Co; Baltimore:
    [Google Scholar]
  13. De Ley J., Gillis M., Swings J. 1984; Family VI. Acetobacteraceae Gillis and De Ley 1980. 267–268 Krieg N. R. Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co; Baltimore:
    [Google Scholar]
  14. De Ley J., Swings J. 1984; The genus Gluconobacter Asai 1935, emend, mut. char. Asai, Iizuka, and Komagata 1964. 275–278 Krieg N. R. Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co; Baltimore:
    [Google Scholar]
  15. De Ley J., Swings J., Gosselé F. 1984; Genus 1. Acetobacter Beijerinck 1898. 215 268–274 Krieg N. R. Bergey’s manual of systematic bacteriology 1: The Williams & Wilkins Co; Baltimore:
    [Google Scholar]
  16. Frateur J. 1950; Essai sur la systématique des acetobacters. Cellule 53:287–392
    [Google Scholar]
  17. Fulmer E. I., Underkofler L. A. 1947; Oxidation of polyhydric alcohols by Acetobacter suboxydans . Iowa State Coll. J. Sci 21:251–270
    [Google Scholar]
  18. Gillis M., De Ley J. 1980; Intra- and intergeneric similarities of the ribosomal ribonucleic acid cistrons of Acetobacter and Gluconobacter. Int. J. Syst. Bacteriol 30:7–27
    [Google Scholar]
  19. Gosselé F., Swings J., De Ley J. 1980; Growth factor requirements of Gluconobacter . Zentralbl. Bakteriol. Mikrobiol. Hyg 1:348–350
    [Google Scholar]
  20. Gosselé F., Swings J., Kersters K., De Ley J. 1983; Numerical analysis of phenotypic features and protein gel electropherograms of Gluconobacter Asai 1935 emend, mut. char. Asai, Iizuka, and Komagata 1964. Int. J. Syst. Bacteriol 33:65–81
    [Google Scholar]
  21. Greenfield S., Claus G. W. 1972; Nonfunctional tricarboxylic acid cycle and the mechanism of glutamate biosynthesis in Acetobacter suboxydans . J. Bacteriol 112:1295–1301
    [Google Scholar]
  22. Grimont P. A., Popoff M. Y., Grimont F., Coynault C., Lemelin M. 1980; Reproducibility and correlation study of three deoxyribonucleic acid hybridization procedures. Curr. Microbiol 4:325–330
    [Google Scholar]
  23. Johnson J. L. 1973; Use of nucleicacid homologies in the taxonomy of anaerobic bacteria. Int. J. Syst. Bacteriol 23:308–315
    [Google Scholar]
  24. Johnson J. L. 1981; Genetic characterization. 450–472 Gehardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A. Manual of methods for general bacteriology American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  25. Kersters K., De Ley J. 1963; The oxidation of glycols by acetic acid bacteria. Biochim. Biophys. Acta 71:311–331
    [Google Scholar]
  26. Lachance M. 1980; Simple method for determination of deoxyribonucleic acid relatedness by thermal elution in hydroxyapatite microcolumns. Int. J. Syst. Bacteriol 30:433–136
    [Google Scholar]
  27. Loitsyanskaya M. S., Pavlenko G. V., Ivchenko A. I. 1979; Taxonomy of acetic acid bacteria. Mikrobiologiya (Engl. Transl.) 48:545–551
    [Google Scholar]
  28. Mandel M., Igambi L., Bergendahl J., Dodson M. L. Jr., Scheltgen E. 1970; Correlation of melting temperature and cesium chloride buoyant density of bacterial deoxyribonucleic acid. J. Bacteriol 101:333–338
    [Google Scholar]
  29. Rigby P. W. J., Dieckmann M., Rhodes C., Berg P. 1977; Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J. Mol. Biol 113:237–251
    [Google Scholar]
  30. Rohrbach K. G., Pfeiffer J. B. 1975; The field induction of bacterial pink disease in pineapple fruit. Phytopathology 65:803–805
    [Google Scholar]
  31. Rohrbach K. G., Pfeiffer J. B. 1976; The interaction of four bacteria causing pink disease of pineapple with several pineapple cultivars. Phytopathology 66:396–399
    [Google Scholar]
  32. Selin Y. M., Harich B., Johnson J. L. 1983; Preparation of labeled nucleic acids (nick translation and iodination) for DNA homology and rRNA hybridization experiments. Curr. Microbiol 8:127–132
    [Google Scholar]
  33. Shimwell J. L., Carr J. G., Rhodes M. E. 1960; Differentiation of Acetomonas and Pseudomonas . J. Gen. Microbiol 23:283–286
    [Google Scholar]
  34. Skerman V. B. D., McGowan V., Sneath P. H. A. 1980; Approved lists of bacterial names. Int. J. Syst. Bacteriol 30:225–420
    [Google Scholar]
  35. Swings J., Gillis M., Kersters K., DeVos P., Gosselé F., De Ley J. 1980; Frateuria, a new genus for Acetobacter aurantius. Int. J. Syst. Bacteriol 30:547–556
    [Google Scholar]
  36. Vaughn R. H. 1942; The acetic acid bacteria. Wallerstein Lab. Commun 5-6:5–26
    [Google Scholar]
  37. White S. A., Claus G. W. 1982; Effect of intracytoplasmic membrane development on oxidation of sorbitol and other polyols by Gluconobacter oxydans . J. Bacteriol 150:934–943
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-35-1-79
Loading
/content/journal/ijsem/10.1099/00207713-35-1-79
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error