1887

Abstract

Deoxyribonucleic acid-deoxyribonucleic acid reassociation and deoxyribonucleic acid-ribosomal ribonucleic acid cistron similarity studies showed that the anaerobic, gram-positive cocci comprise a rather heterogeneous group of bacteria. The deoxyribonucleic acid-ribosomal ribonucleic acid hybridization studies distinguished seven groups. Groups 1 and 2 consisted of and respectively. ATCC 14963 (T = type strain) and ATCC 29427 formed a third group, and DSM 20364 together with Hare group VIII strain NCTC 9820 formed group 4. DSM 20357 was more closely related to ATCC 25553 and ATCC 25759 than to any of the other species studied. strains DSM 20468 and DSM 20367 together with strains belonging to Hare group IX formed group 6, and group 7 consisted of DSM 20469. Strains of different Hare groups were all assigned to one of the seven groups or to the genus (Hare group VIIb strain NCTC 9819) or the genus (Hare group VIa strain NCTC 9806). The anaerobic cocci also have a diversity of murein structures. This is the first report showing that strains belonging to the same species have different murein types.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-34-2-95
1984-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/34/2/ijs-34-2-95.html?itemId=/content/journal/ijsem/10.1099/00207713-34-2-95&mimeType=html&fmt=ahah

References

  1. Barnes E. M., Impey C. S., Stevens B. J., Peel J. L. 1977; Streptococcus pleomorphus sp. nov. : an anaerobic Streptococcus isolated mainly from the caeca of birds.. J. Gen. Microbiol. 102:45–53
    [Google Scholar]
  2. Brenner D. J. 1973; Deoxyribonucleic acid reassociation in the taxonomy of enteric bacteria.. Int. J. Syst. Bacteriol. 23:298–307
    [Google Scholar]
  3. Cato E. P. 1983; Transfer of Peptostreptococcus parvulus (Weinberg, Nativelle, and Prévot 1937) Smith 1957 to the genus Streptococcus: Streptococcus parvulus (Weinberg, Nativelle, and Prévot 1937) comb.nov., nom.rev., emend.. Int. J. Syst. Bacteriol 33:82–84
    [Google Scholar]
  4. Cato E. P., Johnson J. L., Hash D. E., Holdeman L. V. 1983; Synonomy of Peptococcus glycinophilus (Cardon and Barker 1946) Douglas 1957 with Peptostreptococcus micros (Prévot 1933) Smith 1957 and electrophoretic differentiation of Peptostreptococcus micros from Peptococcus magnus (Prévot 1933) Holdeman and Moore 1972.. Int. J. Syst. Bacteriol. 33:207–210
    [Google Scholar]
  5. Colebrook L., Hare R. 1933; The anaerobic streptococci associated with puerperal fever.. J. Obstet. Gynaecol. Br. Emp. 40:609–629
    [Google Scholar]
  6. Crosa J. H., Williams B. L., Jorgensen J. H., Evans C. A. 1979; Comparative study of deoxyribonucleic acid homology and physiological characteristics of strains of Peptococcus saccharolyticus. . Int. J. Syst. Bacteriol. 29:328–332
    [Google Scholar]
  7. De Ley J. 1970; Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonculeic acid.. J. Bacteriol. 101:738–754
    [Google Scholar]
  8. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates.. Eur. J. Biochem. 12:133–142
    [Google Scholar]
  9. De Smedt J., De Ley J. 1977; Intra- and intergeneric similarities of Agrobacterium ribosomal ribonucleic acid cistrons.. Int. J. Syst. Bacteriol. 27:222–240
    [Google Scholar]
  10. Ezaki T. 1982; Mole % guanine plus cytosine of butyrate-producing anaerobic cocci and DNA/DNA relationships among them. Jpn.. J. Bacteriol. 37:607–613
    [Google Scholar]
  11. Ezaki T., Yabuuchi E. 1983; Deoxyribonucleic acid base composition and DNA/DNA hybridization studies among the four species of Peptostreptococcus Kluyver and Van Niel 1936. FEMS Microbiol. Lett. 17:197–200
    [Google Scholar]
  12. Ezaki T., Yamamoto N., Ninomiya K., Suzuki S., Yabuuchi E. 1983; Transfer of Peptococcus indolicus, Peptococcus asaccharolyticus, Peptococcus prevotii, and Peptococcus magnus to the genus Peptostreptococcus and proposal of Peptostreptococcus tetradius sp.nov.. Int. J. Syst. Bacteriol. 33:683–698
    [Google Scholar]
  13. Fischer S., Luczak H., Schleifer K. H. 1982; Improved methods for the detection of class I and class II fructose-1,6-biphosphate aldolases in bacteria.. FEMS Microbiol. Lett. 15:103–108
    [Google Scholar]
  14. Foubert E. L. Jr., Douglas H. C. 1948; Studies on the anaerobic micrococci. I. Taxonomic considerations.. J. Bacteriol. 56:25–34
    [Google Scholar]
  15. Fox G. E., Pechman K. R., Woese C. R. 1977; Comparative cataloging of 16S ribosomal ribonucleic acid: molecular approach to procaryotic systematics.. Int. J. Syst. Bacteriol. 27:44–57
    [Google Scholar]
  16. Fox G. E., Stackebrandt E., Hespeli R. B., Gibson J., Maniloff J., Dyer I., Wolfe R. S., Baich W., Tanner R., Magrum L., Zablen L. B., Blakemore R., Gupta R., Luehrsen K. R., Bonen L., Lewis B. J., Chen K. N., Woese C. R. 1980; The phylogeny of procaryotes.. Science 209:457–463
    [Google Scholar]
  17. Götz F., Fischer S., Schleifer K. H. 1980; Purification and characterization of an unusually heat-stable and acid/base-stable class I fructose-l,6-biphosphate aldolase from Staphylococcus aureus. . Eur. J. Biochem. 108:295–301
    [Google Scholar]
  18. Hare R., Wildy P., Billett F. S., Twort D. N. 1952; The anaerobic cocci: gas formation, fermentation reactions, sensitivity to antibiotics and sulphonamides.. Classification. J. Hyg. 50:295–319
    [Google Scholar]
  19. Harris J. W., Brown J. H. 1929; A clinical and bacteriological study of 113 cases of streptococci puerperal infection.. Johns Hopkins Hosp. Bull. 44:1–31
    [Google Scholar]
  20. Hill G. B. 1981; The anaerobic cocci,. 1631–1658 Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G. The prokaryotes Springer-Verlag; Berlin:
    [Google Scholar]
  21. Holdeman L. V., Moore W. E. C. 1974; New genus, Coprococcus, twelve new species, and emended descriptions of four previously described species of bacteria from human feces.. Int. J. Syst. Bacteriol. 24:260–277
    [Google Scholar]
  22. Huss V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates.. Syst. Appl. Microbiol. 4:184–192
    [Google Scholar]
  23. Huss V. A. R., Schleifer K. H., Lindal E., Schwan O., Smith C. J. 1982; Peptidoglycan type, base composition of DNA, and DNA-DNA homology of Peptococcus indolicus and Peptococcus asaccharolyticus. . FEMS Microbiol. Lett. 15:285–289
    [Google Scholar]
  24. Kilpper R., Buhl U., Schleifer K. H. 1980; Nucleic acid homology studies between Peptococcus saccharolyticus and various anaerobic and facultative anaerobic gram-positive cocci.. FEMS Microbiol. Lett. 8:205–210
    [Google Scholar]
  25. Kilpper-Bälz R., Schleifer K. H. 1981; Transfer of Peptococcus saccharolyticus Foubert and Douglas to the genus Staphylococcus: Staphylococcus saccharolyticus (Foubert and Douglas) comb.nov.. Zentralbl. Bakteriol. Parsitenkd. Infektionskr. Hyg. Abt. 1 Orig. Reihe C 2:124–331
    [Google Scholar]
  26. Kilpper-Bälz R., Schleifer K. H. 1982; DNA-rRNA hybridization studies among staphylococci and some other gram-positive bacteria.. FEMS Microbiol. Lett. 10:357–362
    [Google Scholar]
  27. Kloos W. E., Schleifer K. H. 1975; Isolation and characterization of four new species: Staphylococcus warneri, Staphylococcus capitis, Staphylococcus hominis, and Staphylococcus simulans. . Int. J. Syst. Bacteriol. 25:62–79
    [Google Scholar]
  28. Ludwig W., Schleifer K. H., Fox G. E., Seewaldt E., Stackebrandt E. 1981; A phylogenetic analysis of staphylococci, Peptococcus saccharolyticus and Micrococcus mucilaginosus. . J. Gen. Microbiol. 125:357–366
    [Google Scholar]
  29. Pace N. R. 1973; Structure and synthesis of the ribosomal ribonucleic acid of prokaryotes.. Bacteriol. Rev. 37:562–603
    [Google Scholar]
  30. Prévot A. R. 1948; Manuel de classification et de determination des bacteries anaerobie. Masson; Paris:
    [Google Scholar]
  31. Rogosa M. 1974; Family III. Peptococcaceae, . 517–528 Buchanan R. E., Gibbons N. E. Bergey’s manual of determinative bacteriology, 8. The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  32. Schleifer K. H. 1981; Die Klassifikation von Staphylococcus und Micrococccus. Ein Beispiel fur die moderne Bakteriensystematik.. Forum Mikrobiol. 5:272–278
    [Google Scholar]
  33. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications.. Bacteriol. Rev. 36:407–477
    [Google Scholar]
  34. Schleifer K. H., Nimmermann E. 1973; Peptidoglycan types of strains of the genus Peptococcus. Arch.. Mikrobiol. 93:245–258
    [Google Scholar]
  35. Schleifer K. H., Stackebrandt E. 1983; Molecular taxonomy of prokaryotes.. Annu. Rev. Microbiol. 37:143–188
    [Google Scholar]
  36. Stackebrandt E., Ludwig W., Schleifer K. H., Gross H. J. 1981; Rapid cataloging of ribonuclease T1 resistant oligonucleotides from ribosomal RNAs for phylogenetic studies.. J. Mol. Evol. 17:227–236
    [Google Scholar]
  37. Tanner R. S., Stackebrandt E., Fox G. E., Woese C. R. 1981; A phylogenetic analysis of Acetobacterium woodii, Clostridium barkeri, Clostridium butyricum, Clostridium lituse-burense, Eubacterium limosum, and Eubacterium tenue. Curr.. Microbiol. 5:35–38
    [Google Scholar]
  38. Tanner R. S., Stackebrandt E., Fox G. E., Gupta R., Magrum L. J., Woese C. R. 1982; A phylogenetic analysis of anaerobic eubacteria capable of synthesizing acetate from carbon dioxide.. Curr. Microbiol. 7:127–132
    [Google Scholar]
  39. Thomas C. G. A., Hare R. 1954; The classification of anaerobic cocci and their isolation in normal human beings and pathological processes.. J. Clin. Pathol. 7:300–304
    [Google Scholar]
  40. Weiss N. 1981; Cell wall structure of anaerobic cocci.. Rev. Inst. Pasteur Lyon 14:53–59
    [Google Scholar]
  41. Werner H., Rintelen G. 1973; Anaerobic, gram-positive cocci (Peptococcus variabilis, P. asaccharolyticus, P. prevotii and P. saccharolyticus) isolated from pathological material. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig. Reihe A 223:496–503
    [Google Scholar]
  42. Wittman H. G. 1976; Structure and function and evolution of ribosomes.. Eur. J. Biochem. 61:1–13
    [Google Scholar]
  43. Wren M. W. D., Baldwin A. W. F., Eldon C. P., Sanderson P. J. 1977; The anaerobic culture of clinical specimens: a 14-month study.. J. Med. Microbiol. 10:49–61
    [Google Scholar]
  44. Yankofsky S. A., Spiegelmann S. 1962; The identification of the ribosomal RNA cistron by sequence complementarity.. I. Specificity of complex formationProc. Natl. Acad. SciU.S.A. 48:1069–1078
    [Google Scholar]
  45. Yankofsky S. A., Spiegelmann S. 1962; The identification of the ribosomal RNA cistron by sequence complementarity. II. Saturation of and competitive interaction at the RNA cistronProc. Natl. Acad. SciU.S.A. 48:1466–1472
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-34-2-95
Loading
/content/journal/ijsem/10.1099/00207713-34-2-95
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error