1887

Abstract

Antisera prepared against the glyceraldehyde-3-phosphate dehydrogenases of , and were used to measure relationships among the lactic acid bacteria by immuno-chemical techniques. Our results confirmed the results of earlier phylogenetic studies carried out with anti-fructose diphosphate aldolase sera. We present new data in the form of dendrograms, which, for the first time, include heterofermenta-tive members of the lactic acid bacteria. Previously acquired quantitative data are integrated with our new data to produce a three-dimensional phylogenetic map which shows the relationships of five genera of gram-positive, asporogenous bacteria.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-33-4-723
1983-10-01
2024-07-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/33/4/ijs-33-4-723.html?itemId=/content/journal/ijsem/10.1099/00207713-33-4-723&mimeType=html&fmt=ahah

References

  1. Bang S. S., Baumann L., Woolkalis M. J., Baumann P. 1981; Evolutionary relationships in vibrio and Photobacterium as determined by immunological studies of superoxide dismutase. Arch. Microbiol 130:111–120
    [Google Scholar]
  2. Chace N. M., Sgorbati B., London J. 1981; A comparison of the physical and biochemical properties of NAD-dependent glyceraldehyde-3-phosphate dehydro-genases from three lactic acid bacteria. Zentralbl. Bakteriol. Hyg. Abt. 1 Orig. Reihe C 1:1–10
    [Google Scholar]
  3. Champion A. B., Prager E. M., Wachter D., Wilson A. C. 1974; Microcomplement fixation. 397–416 Wright C. A. Biochemical and immunological taxonomy of animals and plants Academic Press, Inc; London:
    [Google Scholar]
  4. Champion A. B., Soderberg K. L., Wilson A. C., Ambler R. P. 1975; Immunological comparison of azurins of known amino acid sequence. Dependence of cross reactivity upon sequence resemblance. J. Mol. Evol 5:291–365
    [Google Scholar]
  5. Davis B. J. 1964; Disc electrophoresis. II. Method and application to human serum. Ann. N.Y. Acad. Sci 121:404–427
    [Google Scholar]
  6. Dayhoff M. O. 1978; Atlas of protein sequence and structure. National Biomedical Research Foundation Silver Spring; Md:
    [Google Scholar]
  7. Dellaglio F., Bottazzi V., Trovatelli L. D. 1973; Deoxyribonucleic acid homology and base composition in some thermophilic lactobacilli. J. Gen. Microbiol 74:289–297
    [Google Scholar]
  8. Fox G. E., Stackebrandt E., Hespell R. B., Gibson J., Maniloff J., Dyer T. A., Wolfe R. S., Balch W. E., Tanner R. S., Magrum L. J., Zablen L. B., Blakemore R., Gupta R., Bonen L., Lewis B. J., Shahl D. A., Luerhsen K. R., Chen K. N., Woese C. F. 1980; The phylogeny of prokaryotes. Science 209:457–463
    [Google Scholar]
  9. Gasser F., Gasser C. 1971; Immunological relations among lactic acid dehydrogenoses in the genera Lactoba-cillus and Leuconostoc . J. Bacteriol 106:113–128
    [Google Scholar]
  10. Gasser F., Hontebeyrie M. 1977; Immunological relationships of glucose-6-phosphate dehydrogenase of Leuconostoc mesenteroides NCDO 768 (ATCC 12291). Int. J. Syst. Bacteriol 27:6–8
    [Google Scholar]
  11. Cornali A. G., Bardawill C. J., David M. M. 1949; Determination of serum proteins by means of the biuret reaction. J. Biol. Chem 177:751–766
    [Google Scholar]
  12. Hontebeyrie M., Gasser F. 1975; Comparative immunological relationships of two distinct sets of isofunctional dehydrogenases in the genus Leuconostoc . Int. J. Syst. Bacteriol 25:1–6
    [Google Scholar]
  13. Hontebeyrie M., Gasser F. 1977; Deoxyribonucleic acid homologies in the genus Leuconostoc . Int. J. Syst. Bacteriol 27:9–14
    [Google Scholar]
  14. Johnson J. L., Phelps C. F., Cummins C. S., London J., Gasser F. 1980; Taxonomy of the Lactobacillus acidophilus group. Int. J. Syst. Bacteriol 30:53–68
    [Google Scholar]
  15. Kilpper-Balz R., ., Fischer G., Schleifer K. 1982; Nucleic acid hybridization of group N and group D streptococci. Arch. Microbiol 7:245–250
    [Google Scholar]
  16. London J., Chace N. M. 1976; Aldolases of the lactic acid bacteria. Demonstration of immunological relationships among eight genera of Gram positive bacteria using anti-pediococcal aldolase serum. Arch. Microbiol 110:121–128
    [Google Scholar]
  17. London J., Chace N. M., Kline K. 1975; Aldolase of lactic acid bacteria: immunological relationships among aldolases of streptococci and gram-positive nonspore-forming anaerobes. Int. J. Syst. Bacteriol 25:114–123
    [Google Scholar]
  18. London J., Kline K. 1973; Aldolase of lactic acid bacteria: a case history in the use of an enzyme as an evolutionary marker. Bacteriol. Rev 37:453–478
    [Google Scholar]
  19. Neimark H., London J. 1982; Origins of the myco-plasmas: sterol-nonrequiring mycoplasmas evolved from streptococci. J. Bacteriol 150:1259–1265
    [Google Scholar]
  20. Stellar D., Levine L. 1963; Two dimensional immunodiffusion. Methods Enzymol 6:848–854
    [Google Scholar]
  21. Vescovo M., Dellaglio F., Bottazzi V., Sarra P. G. 1979; Deoxyribonucleic acid homology among Lactobacillus species of the subgenus Betabacterium Orla-Jensen. Microbiologica 2:317–330
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-33-4-723
Loading
/content/journal/ijsem/10.1099/00207713-33-4-723
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error