1887

Abstract

A strain of was isolated from the Dead Sea. This isolate differs from the previously isolated halobacteria in (i) its requirement for sodium ions, which is lower than that of most other halobacteria (≥0.5 M), (ii) its requirement for divalent cations (Mg or Ca), which is higher than that of most other halobacteria (optimal growth was obtained in the presence of 0.6 to 1.2 M Mg), (iii) its requirement for either starch or clay minerals (bentonite) for growth in the standard growth medium used, and (iv) its synthesis of purple membrane at low oxygen tensions in the light. This organism has been designated sp. nov. The type strain is strain ATCC 33755.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-33-2-381
1983-04-01
2022-05-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/33/2/ijs-33-2-381.html?itemId=/content/journal/ijsem/10.1099/00207713-33-2-381&mimeType=html&fmt=ahah

References

  1. Beyth M. 1980; Recent evolution and present stage of Dead Sea brines. 155–165 Nissenbaum A. Hypersaline brines and evaporitic environments Elsevier; Amsterdam:
    [Google Scholar]
  2. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523
    [Google Scholar]
  3. Brown H. J., Gibbons N. E. 1955; The effect of magnesium, potassium, and iron on the growth and morphology of red halophilic bacteria. Can. J. Microbiol 1:486–494
    [Google Scholar]
  4. Colwell R. R., Litchfield C. D., Vreeland R. H., Kiefer L. A., Gibbons N. E. 1979; Taxonomic studies of red halophilic bacteria. Int. J. Syst. Bacteriol 29:379–399
    [Google Scholar]
  5. Dussault H. P. 1955; An improved technique for staining red halophilic bacteria. J. Bacteriol 70:484–485
    [Google Scholar]
  6. Edgerton M. E., Brimblecombe P. 1981; Thermodynamics of halobacterial environments. Can. J. Microbiol 27:899–909
    [Google Scholar]
  7. Evans R. W., Kushwaha S. C., Kates M. 1980; The lipids of Halobacterium marismortui, an extremely halophilic bacterium of the Dead Sea. Biochim. Biophys. Acta 619:533–544
    [Google Scholar]
  8. Gibbons N. E. 1974 Halobacteriaceae269–273 Buchanan R. E., Gibbons N. E. Bergey’s manual of determinative bacteriology, 8th. The Williams & Wilkins Co; Baltimore:
    [Google Scholar]
  9. Ginzburg M. 1978; Ion metabolism in whole cells of Halobacterium halobium and H. marismortui. 561–577 Caplan S. R., Ginzburg M. Energetics and structure of halophilic microorganisms Elsevier; Amsterdam:
    [Google Scholar]
  10. Ginzburg M., Sachs L., Ginzburg B. Z. 1970; Ion metabolism in a Halobacterium. I. Influence of age of culture on intracellular concentrations. J. Gen. Physiol 55:187–207
    [Google Scholar]
  11. Gochnauer M. B., Kushwaha S. C., Kates M., Kushner D. 1972; Nutritional control of pigment and iso-prenoid compound formation in extremely halophilic bacteria. Arch. Microbiol 84:339–349
    [Google Scholar]
  12. Gonzalez C., Gutierrez C., Ramirez C. 1978; Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can. J. Microbiol 24:710–715
    [Google Scholar]
  13. Holding A. A., Collee J. G. 1971; Routine biochemical tests. 1–32 Norris J. R., Ribbons D. W. Methods in Microbiology 6A Academic Press, Inc; London:
    [Google Scholar]
  14. Houwink A. L. 1956; Flagella, gas vacuoles and cell-wall structure in Halobacterium halobium: an electron microscope study. J. Gen. Microbiol 15:146–150
    [Google Scholar]
  15. Imhoff J. F., Sahl H. G., Soliman G. S. H., Triiper H. G. 1978; The Wadi Natrun: chemical composition and microbial mass development in alkaline brines of eutrophic desert lakes. Geomicrobiol. J 1:219–234
    [Google Scholar]
  16. Kaplan I. R., Friedman A. 1970; Biological productivity in the Dead Sea. I Microorganisms in the water column. Isr. J. Chem 8:513–528
    [Google Scholar]
  17. Lapage S. P., Sneath P. H. A., Lessel E. F., Skerman V. B. D., Seeliger H. P. R., Clark W. A. 1975; International code of nomenclature of bacteria. 1975 Revision American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  18. Magrum L. J., Luehrsen K. R., Woese C. 1978; Are extreme halophiles actually “bacteria”?. J. Mol. Evol 11:1–8
    [Google Scholar]
  19. Mandel M., Schildkraut C. L., Marmur J. 1968; Use of CsCl gradient analysis for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B:184–195
    [Google Scholar]
  20. Marmur J. 1961; A procedure for the isolation of deoxyri-bonucleic acid from microorganisms. J. Mol. Biol 3:208–218
    [Google Scholar]
  21. Mullakhanbhai M. F., Larsen H. 1975; Halobacterium volcanii spec. nov., a Dead Sea halobacterium with a moderate salt requirement. Arch. Microbiol 104:207–214
    [Google Scholar]
  22. Oren A. 1981; Approaches to the microbial ecology of the Dead Sea. Kiel. Meeresforsch. Sonderh 5:416–424
    [Google Scholar]
  23. Oren A., Shilo M. 1981; Bacteriorhodopsin in a bloom of halobacteria in the Dead Sea. Arch. Microbiol 130:185–187
    [Google Scholar]
  24. Ross H. N. M., Collins M. D., Tindall B. J., Grant W. D. 1981; A rapid procedure for the detection of archaebacterial lipids in halophilic bacteria. J. Gen. Microbiol 123:75–80
    [Google Scholar]
  25. Simon R. D. 1978; Halobacterium strain 5 contains a plasmid which is correlated with the presence of gas vacuoles. Nature (London) 273:314–317
    [Google Scholar]
  26. Tindall B. J., Mills A. A., Grant W. D. 1980; An alkalophilic red halophilic bacterium with a low magnesium requirement from a Kenyan soda lake. J. Gen. Microbiol 116:257–260
    [Google Scholar]
  27. Tomlinson G. A., Hochstein L. I. 1976; Halobacterium saccharovorum sp. nov., a carbohydrate-metabolizing, extremely halophilic bacterium. Can. J. Microbiol 22:587–591
    [Google Scholar]
  28. Tomlinson G. A., Koch T. K. 1974; The metabolism of carbohydrates by extremely halophilic bacteria: glucose metabolism via a modified Entner-Doudoroff pathway. Can. J. Microbiol 20:1085–1091
    [Google Scholar]
  29. Volcani B. E. 1944; The microorganisms of the Dead Sea. 71–81 Papers collected to commemorate the 70th anniversary of Dr. Chaim Weizmann. Collective volume Daniel Sieff Research Institute; Rehovoth, Israel:
    [Google Scholar]
  30. Werber M. M., Mevarech M. 1978; Induction of a dissimulatory reduction pathway of nitrate in Halobacterium of the Dead Sea. Arch. Biochem. Biophys 186:60–65
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-33-2-381
Loading
/content/journal/ijsem/10.1099/00207713-33-2-381
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error