1887

Abstract

Isolates of were obtained from various habitats by enrichment in a mineral medium, using molecular hydrogen as the hydrogen donor and nitrate as the hydrogen acceptor. A total of 11 strains were compared with the following three reference strains: Stanier 381 (type strain) (= DSM 65 = ATCC 17741), Morris (= DSM 413 = ATCC 19367), and Vogt (= DSM 415). A computer analysis based on 235 characters indicated that the strains clustered into subgroups. Deoxyribonucleic acid-deoxyribonucleic acid homology determinations confirmed this suggestion. A formal description of the species is presented, and the taxonomic position of is discussed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-33-1-26
1983-01-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/33/1/ijs-33-1-26.html?itemId=/content/journal/ijsem/10.1099/00207713-33-1-26&mimeType=html&fmt=ahah

References

  1. Abdelal A. T. H., Schlegel H. G. 1974; Purification and regulatory properties of phosphoribulokinase from Hydrogenomonas eutropha H 16. Biochem. J. 139:481–489
    [Google Scholar]
  2. Aggag M., Schlegel H. G. 1973; Studies on gram-positive hydrogen bacterium, Nocardia opaca strain 1 b. I. Description and physiological characterization. Arch. Mikrobiol. 88:299–318
    [Google Scholar]
  3. Auling G., Dittbrenner M., Maarzahl M., Nokhal T., Reh M. 1980; Deoxyribonucleic acid relationships among hydrogen-oxidizing strains of the genera Pseudomonas Alcaligenes and Paracoccus . Int. J. Syst. Bacteriol. 30:123–128
    [Google Scholar]
  4. Baird-Parker A. C. 1965; The classification of staphylococci and micrococci from world-wide sources. J. Gen. Microbiol. 38:363–387
    [Google Scholar]
  5. Beijerinck M. W., Minkman D. C. J. 1910; Bildung und Verbrauch von Stickoxydul durch Bakterien. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 2 25:30–63
    [Google Scholar]
  6. Bowien B., Mayer F., Codd G. A., Schlegel H. G. 1976; Purification, some properties and quaternary structure of the d-ribulose 1,5-diphosphate carboxylase of Alcaligenes eutrophus . Arch. Microbiol. 110:157–166
    [Google Scholar]
  7. Claus D., Schaab-Engels C. 1977; Catalogue of strains. German collection of microorganisms. Gesell-schaft für Strahlen und Umweltforschung mbH; München:
    [Google Scholar]
  8. Cowan S. T. 1974; Cowan and Steel’s manual for the identification of medical bacteria. , 2. Cambridge University Press; Cambridge, England:
    [Google Scholar]
  9. Davis D. H., Doudoroff M., Stanier R. Y., Mandel M. 1969; Proposal to reject the genus Hydrogenomonas: taxonomic implications. Int. J. Syst. Bacteriol. 19:375–390
    [Google Scholar]
  10. Davis D. H., Stanier R. Y., Doudoroff M., Mandel M. 1970; Taxonomic studies on some Gram-negative polarly flagellated “hydrogen bacteria” and related species. Arch. Mikrobiol. 70:1–13
    [Google Scholar]
  11. Doudoroff M. 1974; Genus Paracoccus Davis in Davis, Doudoroff, Stanier and Mandel 1969. 384438–440 Buchanan R. E., Gibbons N. E. Bergey’s manual of determinative bacteriology, 8. The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  12. Finnerty W. R., Hawtrey E., Kallio R. E. 1962; Alkane-oxidizing micrococci. Z. Allg. Mikrobiol. 2:169–177
    [Google Scholar]
  13. Foster J. W., Davis R. H. 1966; A methane-dependent coccus, with notes on classification and nomenclature of obligate, methane-utilizing bacteria. J. Bacteriol. 91:1924–1931
    [Google Scholar]
  14. Friedrich C. G., Mitrenga G. 1981; Oxidation of thiosulfate by Paracoccus denitrificans and other hydrogen bacteria. FEMS Microbiol. Lett. 10:209–212
    [Google Scholar]
  15. Gerstenberg C., Friedrich B., Schlegel H. G. 1982; Physical evidence for plasmids in autotrophic, especially hydrogen-oxidizing bacteria. Arch. Microbiol. 133:90–96
    [Google Scholar]
  16. Gottschalk G. 1964; Verwertung von Fructose durch Hydrogenomonas H 16. II. Cryptisches Verhalten gegen-über Glucose. Arch. Mikrobiol. 49:96–102
    [Google Scholar]
  17. Gottschalk G., Eberhardt U., Schlegel H. G. 1964; Verwertung von Fructose durch Hydrogenomonas H 16 (I.). Arch. Mikrobiol. 48:95–108
    [Google Scholar]
  18. Holding A. J., Collee J. G. 1971; Routine biochemical tests. 1–32 Norris J. R., Ribbons D. W. Methods in microbiology 6A Academic Press, Inc.; London:
    [Google Scholar]
  19. Hugh R., Leifson E. 1955; The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram-negative bacteria. J. Bacteriol. 66:24–26
    [Google Scholar]
  20. Jaccard P. 1908; Nouvelles recherches sur la distribution florale. Bull. Soc. Vaudoise Sci. Nat. 44:223–270
    [Google Scholar]
  21. Jackson J. F., Moriarty D. J. W., Nicholas D. J. D. 1968; Deoxyribonucleic acid base composition and taxonomy of thiobacilli and some nitrifying bacteria. J. Gen. Microbiol. 53:53–60
    [Google Scholar]
  22. John P., Whatley F. R. 1975; Paracoccus denitrificans and evolutionary origin of the mitochondrion. Nature (London) 254:495–498
    [Google Scholar]
  23. Jiittner R.R., Lafferty R. M., Knackmuss H. J. 1975; A simple method for the determination of poly-β-hydroxybutyric acid in microbial biomass. Eur. J. App. Microbiol. 1:233–237
    [Google Scholar]
  24. Klein H. P., Doudoroff M. 1950; The mutation of Pseudomonas putrefaciens to glucose utilization and its enzymatic basis. J. Bacteriol. 59:739–750
    [Google Scholar]
  25. Kluyver A. J. 1956; Life’s flexibility; microbial adaptation. 93–129 Kluyver A. J., van Niel C. B. The microbe’s contribution to biology Harvard University Press; Cambridge, Mass:
    [Google Scholar]
  26. Kocur M., Martinec T. 1962; A taxonomic study of the genus Micrococcus . Folia Fac. Sci. Univ. Purkynianae Brunensis Czech. 3:78–110
    [Google Scholar]
  27. Kocur M., Martinec T., Mazanec K. 1968; Fine structure of Micrococcus denitrificans and M. halodenitrificans in relation to their taxonomy. Antonie van Leeu-wenhoek J. Microbiol. Serol. 34:19–26
    [Google Scholar]
  28. Kovacs N. 1956; Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature (London) 178:703
    [Google Scholar]
  29. Kröger A., Dadak V., Klingenberg M., Diemer F. 1971; On the role of quinones in bacterial electron transport. Differential roles of ubiquinone and menaquinone in Proteus rettgeri . Eur. J. Biochem. 21:322–333
    [Google Scholar]
  30. Lam Y., Nicholas D. J. D. 1969; Aerobic and anaerobic respiration in Micrococcus denitrificans . Biochim. Biophys. Acta 172:450–461
    [Google Scholar]
  31. Lance G. N., Williams W. T. 1967; A general theory of classificatory sorting strategies. I. Hierarchical system. Comput. J. 9:373–380
    [Google Scholar]
  32. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275
    [Google Scholar]
  33. Mandel M., Marmur J. 1968; Use of ultraviolet absorbance temperature profile for determining the gua-nine plus cytosine content of DNA. Methods Enzymol. 12B:195–206
    [Google Scholar]
  34. Newton N. 1969; The two-haem nitrate reductase of Micrococcus denitrificans . Biochim. Biophys. Acta 185:316–331
    [Google Scholar]
  35. Nokhal T.-H., Mayer F. 1979; Structural analysis of four strains of Paracoccus denitrificans . Antonie van Leeuwenhoek J. Microbiol. Serol. 45:185–197
    [Google Scholar]
  36. Nokhal T.-H., Schlegel H. G. 1980; The regulation of hydrogenase formation as a differentiating character of strains of Paracoccus denitrificans . Antonie van Leeuwenhoek J. Microbiol. Serol. 46:143–155
    [Google Scholar]
  37. Owen R. J., Hill L. R., Lapage S. P. 1969; Determination of DNA base composition from melting profiles in dilute buffer. Biopolymers 7:503–516
    [Google Scholar]
  38. Pfennig N. 1974; Rhodopseudomonas globiformis, sp. n., a new species of the Rhodospirillaceae. Arch. Microbiol. 100:197–206
    [Google Scholar]
  39. Pitt T. L., Dey D. 1970; A method for the detection of gelatinase production by bacteria. J. Appl. Bacteriol. 33:687–691
    [Google Scholar]
  40. Pleva V., Kocur M. 1963; Electron microscopy of the genera Micrococcus and Staphylococcus . Publ. Fac. Sci. Univ. J. E. Purkyne Brno K30:443–444
    [Google Scholar]
  41. Rosypal S., Rosypalova A., Horels J. 1966; The classification of micrococci and staphylococci based on their DNA base composition and Adansonian analysis. J. Gen. Microbiol. 44:281–292
    [Google Scholar]
  42. Schäffer J. B. 1979; Beschreibung and Benutzeranleitung des Wishartschen Clusteranalyse-Pakets. Gesellschaft Strahlen-Umweltforsch. Bericht Md. 295:1–176
    [Google Scholar]
  43. Schink B., Schlegel H. G. 1978; Hydrogen metabolism in aerobic hydrogen-oxidizing bacteria. Biochemie 60:297–305
    [Google Scholar]
  44. Schlegel H. G., Kaltwasser H., Gottschalk G. 1961; Ein Submersverfahren zur Kultur wasserstoff-oxydier-ender Bakterien: wachstumsphysiologische Untersuchungen. Arch. Mikrobiol. 38:209–222
    [Google Scholar]
  45. Schmidt K., Jensen S. L., Schlegel H. G. 1963; Die Carotinoide der Thiorhodaceae. I. Okenon als Hauptcarotinoid von Chromatium okenii Perty. Arch. Mikrobiol. 46:117–126
    [Google Scholar]
  46. Schneider K., Schlegel H. G. 1977; Localization and stability of hydrogenases from aerobic hydrogen bacteria. Arch. Microbiol. 112:229–238
    [Google Scholar]
  47. Scholes P. B., Smith L. 1968; Composition and properties of the membrane-bound respiratory chain system of Micrococcus denitrificans . Biochim. Biophys. Acta 153:363–375
    [Google Scholar]
  48. Shilo M., Stanier R. Y. 1957; The utilization of tartaric acids by Pseudomonas . J. Gen. Microbiol. 16:482–490
    [Google Scholar]
  49. Sierra G. 1957; A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates. Antonie van Leeuwenhoek J. Microbiol. Serol. 23:15–22
    [Google Scholar]
  50. Sim E., Sim R. B. 1979; Hydrodynamic parameters of the detergent-solubilised hydrogenase from Paracoccus denitrificans . Eur. J. Biochem. 97:119–126
    [Google Scholar]
  51. Sim E., Vignais P. M. 1978; Hydrogenase activity in Paracoccus denitrificans Partial purification and interaction with the electron transport chain. Biochemie 60:307–314
    [Google Scholar]
  52. Skerman V. B. D. 1967 A guide to the identification of the genera of bacteria, 2. The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  53. Skinner F. A. 1960; The isolation of anaerobic cellulose-decomposing bacteria from soil. J. Gen. Microbiol. 22:539–554
    [Google Scholar]
  54. Sneath P. H. A. 1957; Some thoughts on bacterial classification. J. Gen. Microbiol. 17:184–200
    [Google Scholar]
  55. Stanier R. Y., Palleroni N. J., Doudoroff M. 1966; The aerobic pseudomonads: a taxonomic study. J. Gen. Microbiol. 43:159–271
    [Google Scholar]
  56. Verhoeven W. 1957; Micrococcus denitrificans Beijerinck, 1910, emend Sijderius, 1946; 463 Breed R. S., Murray E. G. D., Smith N. R. Bergey’s manual of determinative bacteriology, 7. The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  57. Verhoeven W., Koster A. L., van Nievelt M. C. A. 1954; Studies on true dissimilatory nitrate reduction. Ill Micrococcus denitrificans Beijerinck, a bacterium capable of using molecular hydrogen in denitrification. Antonie van Leeuwenhoek J. Microbiol. Serol. 20:273–284
    [Google Scholar]
  58. Vogt M. 1965; Wachstumsphysiologische Untersuchungen an Micrococcus denitrificans Beij. Arch. Mikrobiol. 50:256–281
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-33-1-26
Loading
/content/journal/ijsem/10.1099/00207713-33-1-26
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error