1887

Abstract

Facultatively anaerobic, nitrogen-fixing bacterial strains were isolated from sources as diverse as the gastrointestinal tracts of sea urchins collected in Nova Scotia, Canada, and the surfaces of reeds growing in a drainage ditch in Kent, England. These strains were placed in the genus Pacini 1865 of the family on the basis of their morphological, physiological, and biochemical characteristics, as well as on the basis of the guanine-plus-cytosine contents of their deoxyribonucleic acids (45.9 to 47.2 mol%). They were clearly distinguished from strains of the currently recognized species in the genus by a combination of diverse traits, including the production of nitrogenase, the inability to hydrolyze casein, deoxyribonucleic acid, gelatin, and Tween 80, the ability to ferment L-arabinose, cellobiose, salicin, and D-xylose, and the presence of an arginine dihydrolase system. Deoxyribonucleic acid homology studies supported recognition of these nitrogen-fixing strains as a new species, for which the name is proposed. Strain ATCC 33466 (= strain 1 = NS1) is the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-32-3-350
1982-07-01
2022-01-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/32/3/ijs-32-3-350.html?itemId=/content/journal/ijsem/10.1099/00207713-32-3-350&mimeType=html&fmt=ahah

References

  1. Baumann P., Baumann L., Bang S. S., Woolkalis M. J. 1980; Reevaluation of the taxonomy of Vibrio, Beneckea and Photobacterium: abolition of the genus Beneckea . Curr. Microbiol 4:127–132
    [Google Scholar]
  2. Burns R. C., Hardy F. R. W. 1975 Nitrogen fixation in bacteria and higher plants Springer-Verlag; New York:
    [Google Scholar]
  3. Cowan S. T. 1974; Cowan and Steel’s manual for the identification of medical bacteria. , 2. Cambridge University Press; New York:
    [Google Scholar]
  4. Denhardt D. T. 1966; A membrane-filter technique for the detection of complementary DNA. Biochem. Biophys. Res. Commun 23:641–646
    [Google Scholar]
  5. Furniss A. L., Lee J. V., Donovan T. J. 1978; The vibrios. Public Health Laboratory Service Monograph Series, no. 11 Her Majesty’s Stationery Office; London:
    [Google Scholar]
  6. Guerinot M. L., Patriquin D. G. 1981; N2fixing vibrios isolated from the gastrointestinal tract of sea urchins. Can. J. Microbiol 27:311–317
    [Google Scholar]
  7. Guerinot M. L., Patriquin D. G. 1981; The association of N2-fixing bacteria with sea urchins. Mar. Biol 62:197–207
    [Google Scholar]
  8. Hardy R. W. F., Holsten R. D., Jackson E. K., Burns R. C. 1968; The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol 43:1185–1207
    [Google Scholar]
  9. Knowles R. 1977; The significance of asymbiotic dinitrogen fixation by bacteria. 34–83 Hardy R. W. F., Gibson A. H. A treatise on dinitrogen fixation, sect. 4. Agronomy and ecology John Wiley & Sons, Inc.; New York:
    [Google Scholar]
  10. Lee J. V., Donovan T. J., Furniss A. L. 1978; Characterization, taxonomy, and emended description of Vibrio metschnikovii . Int. J. Syst. Bacteriol 28:99–111
    [Google Scholar]
  11. Lee J. V., Shread P., Furniss A. L., Bryant T. N. 1981; Taxonomy and description of Vibrio fluvialis sp. nov. (synonym group F vibrios, group EF6). J. Appl. Bacteriol 50:73–94
    [Google Scholar]
  12. Marmur J. 1961; A procedure for the isolation of deoxy-ribonucleic acid from microorganisms. J. Mol. Biol 3:208–218
    [Google Scholar]
  13. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol 5:109–118
    [Google Scholar]
  14. McClung C. R., Patriquin D. G. 1980; Isolation of a nitrogen-fixing Campylobacter species from the roots of Spartina alterniflora Loisel. Can. J. Microbiol 26:881–886
    [Google Scholar]
  15. Nishibuchi M., Muroga K., Seidler R. J., Fryer J. L. 1979; Pathogenic Vibrio isolated from cultured eels. IV. Deoxyribonucleic acid studies. Bull. Jpn. Soc. Sci. Fish 45:1469–1473
    [Google Scholar]
  16. Owen R. J., Hill L. R. 1979; Estimation of base composition, base pairing and genome sizes of bacterial deoxyribonucleic acids. 277–296 Skinner F. A., Lovelock D. W. Identification methods for microbiologists, 2. Academic Press, Inc.; London:
    [Google Scholar]
  17. Postgate J. R. 1974; Evolution within nitrogen-fixing systems. 263–293 Carlile M. J., Shehel J. J. Evolution in the microbes Cambridge University Press; New York:
    [Google Scholar]
  18. Reichelt J. L., Baumann P., Baumann L. 1976; Study of genetic relationships among marine species of the genera Beneckea and Photobacterium by means of in vitro DNA/DNA hybridization. Arch. Microbiol 110:101–210
    [Google Scholar]
  19. Schubert R. H. W. 1969; Aeromonas hydrophila subsp. proteolytica comb. nov. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig 211:409–412
    [Google Scholar]
  20. Strength W. J., Isani B., Linn D. M., Williams F. D., Vandermolen G. E., Laughon B. E., Kreig N. R. 1976; Isolation and characterization of Aquaspirillum fasciculus sp. nov., a rod-shaped nitrogen-fixing bacterium having unusual flagella. Int. J. Syst. Bacteriol 26:253–268
    [Google Scholar]
  21. Tarrand J. J., Krieg N. R., Dobereiner J. 1978; A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov., and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasiliense sp. nov. Can. J. Microbiol 24:967–980
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-32-3-350
Loading
/content/journal/ijsem/10.1099/00207713-32-3-350
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error