1887

Abstract

Deoxyribonucleic acid (DNA) base composition, intergenic transformation efficiency, and DNA hybridization were used to determine the relatedness of a variety of established or proposed species of and . These studies indicated that these bacteria form three genetic groupings. Group I, comprised of . , . , . , . , . , . , . , . , . , . , . , , , and . , was characterized by DNA base compositions ranging between 49.3 and 55.6 mol% guanine plus cytosine. Group II, comprised of . , . , and . , was characterized by DNA base compositions ranging between 45.3 and 47.3 mol% guanine plus cytosine. Group III, comprised of one species, . , was characterized by DNA base compositions between 41 and 42 mol% guanine plus cytosine. Transformation and DNA hybridization results revealed that members of each group, with few exceptions, exhibited high DNA homology with other members of the same group but most often distinctly lower levels of homology with members of a different group. These data suggest that . , . , and . may be significantly different from other neisseriae and from branhamellae to warrant their separation in a distinct genus.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-32-1-57
1982-01-01
2023-02-01
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/32/1/ijs-32-1-57.html?itemId=/content/journal/ijsem/10.1099/00207713-32-1-57&mimeType=html&fmt=ahah

References

  1. Bøvre K. 1963; Affinities between Moraxella spp. and a strain of Neisseria catarrhalis as expressed by transformation. Brief report. Acta Pathol. Microbiol. Scand 58:528
    [Google Scholar]
  2. Bøvre K. 1967; Transformation and DNA base composition in taxonomy, with special reference to recent studies in Moraxella and Neisseria . Acta Pathol. Microbiol. Scand 69:123–144
    [Google Scholar]
  3. Bøvre K. 1970; Interspecies pulse-RNA-DNA hybridization in Moraxella and Neisseria, as compared with genetic transformation and DNA base determinations. Acta Pathol. Microbiol. Scand. Sect. A, B Suppl 215:6–7
    [Google Scholar]
  4. Bøvre K. 1970; Pulse RNA-DNA hybridization between rodshaped and coccal species of the Moraxella-Neisseria groups. Acta Pathol. Microbiol. Scand. Sect. B 78:565–574
    [Google Scholar]
  5. Bøvre K., Fiandt M., Szybalski W. 1969; DNA base composition of Neisseria, Moraxella, Acinetobacter, as determined by measurement of buoyant density of CsCl gradients. Can. J. Microbiol 15:335–338
    [Google Scholar]
  6. Bøvre K., Holten E. 1970; Neisseria elongata sp. nov., a rod-shaped member of the genus Neisseria. Reevaluation of cell shape as a criterion in classification. J. Gen. Microbiol 60:67–75
    [Google Scholar]
  7. Burton K. 1968; Determination of DNA concentration with diphenylamine. Methods Enzymol 12B:163–166
    [Google Scholar]
  8. Catlin B. W., Cunningham L. S. 1961; Transforming activities and base contents of deoxyribonucleate preparations from various neisseriae. J. Gen. Microbiol 26:303–312
    [Google Scholar]
  9. De Ley J. 1970; Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J. Bacteriol 101:738–754
    [Google Scholar]
  10. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem 12:133–142
    [Google Scholar]
  11. De Ley J., Tijtgat R. 1970; Evaluation of membrane filter methods for DNA-DNA hybridization. Antonie van Leeuwenhoek J. Microbiol. Serol 36:461–474
    [Google Scholar]
  12. Frøholm L. O., Bøvre K. 1973; The fimbriated state and competence in genetic transformation of three Moraxella species. 125–139 Archer L. J. Bacterial transformation Academic Press, Inc; New York:
    [Google Scholar]
  13. Frøholm L. O., Jyssum K., Bøvre K. 1973; Electron microscopical and cultural features of Neisseria meningitidis competence variants. Acta Pathol. Microbiol. Scand. Sect. B 81:525–537
    [Google Scholar]
  14. Holten E. 1973; Glutamate dehydrogenases in genus Neisseria . Acta Pathol. Microbiol. Scand. Sect. B 81:49–58
    [Google Scholar]
  15. Holten E. 1974; Immunological comparison of NADP-dependent glutamate dehydrogenase and malate dehydrogenase in genus Neisseria . Acta Pathol. Microbiol. Scand. Sect. B 82:849–859
    [Google Scholar]
  16. Jyssum K., Lie S. 1965; Genetic factors determining competence in transformation of Neisseria meningitidis. 1. A permanent loss of competence. Acta Pathol. Microbiol. Scand 63:306–316
    [Google Scholar]
  17. Kingsbury D. T. 1967; Deoxyribonucleic acid homologies among species of the genus Neisseria. J. Bacteriol 94:870–874
    [Google Scholar]
  18. LaMacchia E. H., Pelczar M. J. Jr 1966; Analyses of deoxyribonucleic acid of Neisseria caviae and other Neisseriae. J. Bacteriol 91:514–516
    [Google Scholar]
  19. Lee K. Y., Wahl R., Barbu E. 1956; Contenu en bases puriques et pyrimidiques des acides deoxyribonucleiques des bacteries. Ann. Inst. Pasteur Paris 91:212–224
    [Google Scholar]
  20. Leidy G., Hahn E., Alexander H. E. 1956; On the specificity of deoxyribonucleic acid which induces streptomycin resistance in Hemophilus. J. Exp. Med 104:305–320
    [Google Scholar]
  21. Leidy G., Hahn E., Alexander H. E. 1959; Interspecific transformation in Hemophilus; a possible index of relationship between H. influenzae and H. aegyptius. Proc. Soc. Exp. Biol. Med 102:86–88
    [Google Scholar]
  22. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin phenol reagent. J. Biol. Chem 193:265–275
    [Google Scholar]
  23. Maier T. W., Zubrzycki L., Coyle M. B. 1975; Genetic analysis of drug resistance in Neisseria gonorrhoeae; identification and linkage relationships of loci controlling drug resistance. Antimicrob. Agents Chemother 7:676–681
    [Google Scholar]
  24. Mandel M., Marmur J. 1968; Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 128:195–206
    [Google Scholar]
  25. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol 3:208–218
    [Google Scholar]
  26. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol 5:109–118
    [Google Scholar]
  27. Marmur J., Seaman E., Levine J. 1963; Interspecific transformation in Bacillus. J. Bacteriol 85:461–467
    [Google Scholar]
  28. Pakula R. 1962; Can transformation be used as a criterion in taxonomy of bacteria. 617–629 Gibbons N. E. Recent progress in microbiology 8 University of Toronto Press; Montreal:
    [Google Scholar]
  29. Perry D., Slade H. D. 1964; Intraspecific and interspecific transformation in streptococci. J. Bacteriol 88:595–601
    [Google Scholar]
  30. Reyn A. 1974; Family I. Neisseriaceae. 427–438 Buchanan R. E., Gibbons N. E. Bergey’s manual of determinative bacteriology, 8. The Williams & Wilkins Co; Baltimore:
    [Google Scholar]
  31. Schildkraut C. L., Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J. Mol. Biol 4:430–443
    [Google Scholar]
  32. Siddiqui A., Goldberg I. D. 1975; Intergenic transformation of Neisseria gonorrhoeae and Neisseria perflava to streptomycin resistance and nutritional independence. J. Bacteriol 124:1359–1365
    [Google Scholar]
  33. Skerman V. B. D., McGowan V., Sneath P. H. A. 1980; Approved lists of bacterial names. Int. J. Syst. Bacteriol 30:225–420
    [Google Scholar]
  34. Snell J. J. S., Lapage S. P. 1976; Transfer of some saccharolytic Moraxella species to Kingella Henriksen and Bøvre 1976, with descriptions of Kingella indologenes sp. nov. and Kingella denitriflcans sp. nov. Int. J. Syst. Bacteriol 26:451–458
    [Google Scholar]
  35. Sparling P. F. 1966; Genetic transformation of Neisseria gonorrhoeae to streptomycin resistance. J. Bacteriol 92:1364–1371
    [Google Scholar]
  36. White L. A., Kellogg D. S. Jr 1965; Neisseria gonorrhoeae identification in direct smears by a fluorescent antibody-counterstain method. Appl. Microbiol 13:171–174
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-32-1-57
Loading
/content/journal/ijsem/10.1099/00207713-32-1-57
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error