Taxonomy of the Genus Prévot Free

Abstract

Results of deoxyribonucleic acid homology studies of 116 strains of Prévot, representing the two species and seven subspecies currently recognized in this genus, showed seven deoxyribonucleic acid homology groups distinct at the species level. Because the type strains of . subsp. and . subsp. had high homology, we regard . Prévot 1933 as a later subjective synonym of . (Veillon and Zuber, 1896) Prévot 1933. The species . , . (Rogosa) comb. nov., . (Rogosa) comb. nov., . (Rogosa) comb. nov., . (Rogosa) comb. nov., . (Rogosa) comb. nov., and . sp. nov. (type strain, ATCC 33540) are recognized. Because most strains of . produced acid in peptone-yeast extract-fructose media, the genus description is emended to include strains that ferment fructose.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-32-1-28
1982-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/32/1/ijs-32-1-28.html?itemId=/content/journal/ijsem/10.1099/00207713-32-1-28&mimeType=html&fmt=ahah

References

  1. Chelm B. K., Hallick R. B. 1976; Changes in the expression of the chloroplast genome Euglena gracilis during chloroplast development. Biochemistry 15:593–599
    [Google Scholar]
  2. Crosa J. H., Brenner D. J., Falkow S. 1973; Use of single-strand-specific nuclease for analysis of bacterial and plasmid deoxyribonucleic acid homo- and heteroduplexes. J. Bacteriol 115:904–911
    [Google Scholar]
  3. Cummins C. S., Johnson J. L. 1971; Taxonomy of the clostridia: wall composition and DNA homologies in Clostridium butyricum and other butyric acid-producing clostridia. J. Gen. Microbiol 67:33–46
    [Google Scholar]
  4. Foubert E. L. Jr., Douglas H. C. 1948; Studies on the anaerobic micrococci. I. Taxonomic considerations. J. Bacteriol 56:25–34
    [Google Scholar]
  5. Holdeman L. V., Cato E. P., Moore W. E. C. 1977; Anaerobe laboratory manual. , 4. Virginia Polytechnic Institute and State University; Blacksburg:
    [Google Scholar]
  6. Johnson J. L. 1973; Use of nucleic-acid homologies in the taxonomy of anaerobic bacteria. Int. J. Syst. Bacteriol 23:308–315
    [Google Scholar]
  7. Johnson J. L. 1978; Taxonomy of the Bacteroides. I. DNA homologies among Bacteroides fragilis and other saccharolytic Bacteroides species. Int. J. Syst. Bacteriol 28:245–256
    [Google Scholar]
  8. Johnson J. L. 1980; Specific strains of Bacteroides species in human fecal flora as measured by deoxyribonucleic acid homology. Appl. Environ. Microbiol 39:407–413
    [Google Scholar]
  9. Johnson J. L., Cummins C. S. 1972; Cell wall composition and deoxyribonucleic acid similarities among the anaerobic coryneforms, classical propionibacteria, and strains of Arachnia propionica . J. Bacteriol 109:1047–1066
    [Google Scholar]
  10. Johnson J. L., Phelps C. F., Cummins C. S., London J., Gasser F. 1980; Taxonomy of the Lactobacillus acidophilus group. Int. J. Syst. Bacteriol 30:53–68
    [Google Scholar]
  11. Kafkewitz D., Delwiche E. A. 1969; Utilization of d-ribose by Veillonella . J. Bacteriol 98:903–907
    [Google Scholar]
  12. Kafkewitz D., Delwiche E. A. 1972; Ribose utilization by Veillonella alcalescens . J. Bacteriol 109:1144–1148
    [Google Scholar]
  13. Langford G. C Jr., Faber J. E. Jr., Pelczar M. J. 1950; The occurrence of anaerobic gram-negative diplococci in the normal human mouth. J. Bacteriol 59:349–356
    [Google Scholar]
  14. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol 3:208–218
    [Google Scholar]
  15. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol 5:109–118
    [Google Scholar]
  16. Moore W. E. C, Hash D. E., Holdeman L. V., Cato E. P. 1980; Polyacrylamide slab gel electrophoresis of soluble proteins for studies of bacterial floras. Appl. Environ. Microbiol 39:900–907
    [Google Scholar]
  17. Prévot A. R. 1933; Études de systématique bacterienne. I. Lois generales. II. Cocci anaerobies. Ann. Sci. Nat. Bot 15:23–260
    [Google Scholar]
  18. Rogosa M. 1964; The genus Veillonella. I. General cultural, ecological, and biochemical considerations. J. Bacteriol 87:162–170
    [Google Scholar]
  19. Rogosa M. 1965; The genus Veillonella. IV. Serological groupings and genus and species emendations. J. Bacteriol 90:704–709
    [Google Scholar]
  20. Rogosa M. 1974; Gram-negative anaerobic cocci. 445–447 Buchanan R. E., Gibbons N. E. Bergey’s manual of determinative bacteriology, 8. The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  21. Rogosa M., Bishop F. S. 1964; The genus Veillonella. II. Nutritional studies. J. Bacteriol 87:574–580
    [Google Scholar]
  22. Rogosa M., Bishop F. S. 1964; The genus Veillonella III. Hydrogen sulfide production by growing cultures. J. Bacteriol 88:37–41
    [Google Scholar]
  23. Rogosa M., Krichevsky M. I., Bishop F. S. 1965; Truncated glycolytic system in Veillonella . J. Bacteriol 90:164–171
    [Google Scholar]
  24. Skerman V. B. D., McGowan V., Sneath P. H. A. 1980; Approved lists of bacterial names. Int. J. Syst. Bacteriol 30224–420
    [Google Scholar]
  25. Veillon A., Zuber M. M. 1898; II. Recherches sur quelques microbes strictement anaérobies et leur role en pathologic. Arch. Med. Exp 10:517–545
    [Google Scholar]
  26. Yoshimura F., Kasai N., Sugawara B., Suzuki T. 1980; Acetate kinase in the genus Veillonella: effect of succinate, serological cross-reactivity, and separation by electrophoresis. J. Bacteriol 141:1312–1319
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-32-1-28
Loading
/content/journal/ijsem/10.1099/00207713-32-1-28
Loading

Data & Media loading...

Most cited Most Cited RSS feed