1887

Abstract

Strains of anaerobic, sporeforming bacteria were isolated by using adenine as a carbon and energy source. Strain WA-1 could utilize all naturally occurring purines, as well as such products of purine degradation as glycine and some of its derivatives, as substrates. The products formed were acetate, formate, carbon dioxide, and ammonia. The organism depended strictly on the availability of selenium compounds for growth. Selenite and molybdate supplementation of the medium promoted the formation of active formate dehydrogenase and xanthine dehydrogenase. The molar growth yield on adenine or hypoxanthine was 10.0 g of dry weight per mol of substrate. The organism’s doubling time was 80 min when the strain was grown at its optimum temperature, 36°C. The organism had a guanine plus cytosine content of 29 mol% (by the thermal denaturation method). It shared similarities with and “” (not on the Approved Lists of Bacterial Names), but it could be differentiated from these by deoxyribonucleic acid-deoxyribonucleic acid homology. Therefore, it is described as a new species, . The ability of the type strain, WA-1 (DSM 1384), to grow on adenine and glycine was the most significant difference between it and the two above-mentioned species.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-31-2-184
1981-04-01
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/31/2/ijs-31-2-184.html?itemId=/content/journal/ijsem/10.1099/00207713-31-2-184&mimeType=html&fmt=ahah

References

  1. Andreesen J. R. 1980; Role of selenium, molybdenum and tungsten in anaerobes. p 29–38 In Gottschalk G., Pfennig N., Werner H. ed Anaerobes and anaerobic infections. Gustav Fischer Verlag GmbH & Co; KG, Stuttgart:
    [Google Scholar]
  2. Aretz W., Kaspari H., Klemme J.-H. 1978; Utilization of purines as nitrogen source by facultative phototrophic bacteria. FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Lett 4:249–253
    [Google Scholar]
  3. Auling G., Dittbrenner M., Maarzahl M., Nokhal T., Reh M. 1980; Deoxyribonucleic acid relationships among hydrogen-oxidizing strains of the genera Pseu-domonas, Alcaligenes, and Paracoccus. Int. J. Syst. Bacteriol 30:123–128
    [Google Scholar]
  4. Barker H. A. 1961; Fermentations of nitrogenous organic compounds. p 151–207 In Gunsalus I. C., Stanier R. Y. ed The bacteria. vol 2 Academic Press, Inc; New York:
    [Google Scholar]
  5. Barker H. A., Beck J. V. 1941; The fermentative decomposition of purines by Clostridium acidi-urici and Clostridium cylindrosporum. J. Biol. Chem 141:3–27
    [Google Scholar]
  6. Barker H. A., Beck J. V. 1942; Clostridium acidiurici and Clostridium cylindrosporum, organisms fer-menting uric acid and some other purines. J. Bacteriol 43:291–304
    [Google Scholar]
  7. Barker H. A., Peterson W. H. 1944; The nutritional requirements of Clostridium acidi-urici. J. Bacteriol 47:307–308
    [Google Scholar]
  8. Bauchop T., Elsden S. R. 1960; The growth of micro-organisms in relation to their energy supply. J. Gen. Microbiol 23:457–469
    [Google Scholar]
  9. Beck J. V. 1948; A microbiological method for the determination of adenine. J. Biol. Chem 176:1169–1175
    [Google Scholar]
  10. Beisenherz G., Boltze H. J., Bucher T., Czok R., Garhade K. H., Meyer-Arendt E., Pfleiderer G. 1953; Diphosphoffuctose-Aldolase, Phosphoglyceralde-hyd-Dehydrogenase, Milchsaure-Dehydrogenase, Glycerophosphat-Dehydrogenase und Pyruvat-Kinase aus Kaninchenmuskulatur in einem Arbeitsgang. Z. Natur-forsch. Teil B 8:555–577
    [Google Scholar]
  11. Bradshaw W. H., Barker H. A. 1960; Purification and properties of xanthine dehydrogenase from Clos-tridium cylindrosporum. J. Biol. Chem 235:3620–3629
    [Google Scholar]
  12. Braun M., Schoberth S., Gottschalk G. 1979; Enumeration of bacteria forming acetate from H2 and C02 in anaerobic habitats. Arch. Microbiol 120:201204
    [Google Scholar]
  13. Bryant M. P. 1972; Commentary on the Hungate technique for culture of anaerobic bacteria. Am J. Clin. Nutr 25:1324–1328
    [Google Scholar]
  14. Cardon B. P., Barker H. A. 1947; Amino acid fermentations by Clostridium propionicum and Diplococcus glycinophilus. Arch. Biochem 12:165–180
    [Google Scholar]
  15. Champion A. B., Rabinowitz J. C. 1977; Ferredoxin and formyltetrahydrofolate synthetase: compar-ative studies with Clostridium acidiurici, Clostridium cylindrosporum, and newly isolated anaerobic uric acid-fermenting strains. J. Bacteriol 132:1003–1020
    [Google Scholar]
  16. Collins C. H., Lyne P. M. 1976; Microbiological methods. , 4th ed.. Butterworth & Co. (Publishers), Ltd; London:
    [Google Scholar]
  17. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem 12:133–142
    [Google Scholar]
  18. Dorn M., Andreesen J. R., Gottschalk G. 1978; Fermentation of fumarate and L-malate by Clostridium formicoaceticum. J. Bacteriol 133:26–32
    [Google Scholar]
  19. Eschmann K., Kaltwasser H. 1980; Inhibition of purine utilization by adenine in Alcaligenes eutrophus H 16. Arch. Microbiol 125:29–34
    [Google Scholar]
  20. Fox G. E., Stackebrandt E., Hespell R. B., Gibson J., Maniloff J., Dyer T., Wolfe R. S., Balch W., Tanner R., Magrum L., Zablen L. B., Blakemore R., Gupta R., Bonen L., Lewis B. J., Chen K. N., Woese C. R. 1980; The phylogeny of procaryotes. Science. 209:457–463
    [Google Scholar]
  21. Gottwald M., Andreesen J. R., LeGall J., Ljungdahl L. G. 1975; Presence of cytochrome and mena-quinone in Clostridium formicoaceticum and Clostrid-ium thermoaceticum. J. Bacteriol 122:325–328
    [Google Scholar]
  22. Hallmann L., Burkhardt F. 1974; Klinische Mik robiologie. , 4th ed.. Georg Thieme Verlag KG; Stuttgart:
    [Google Scholar]
  23. Holdeman L. V., Cato E. P., Moore W. E. C. 1977; Anaerobe laboratory manual. , 4th ed.. V.P.I. An-aerobe Laboratory, Virginia Polytechnic Institute and State University; Blacksburg:
    [Google Scholar]
  24. Johnson J. L. 1973; Use of nucleic-acid homologies in the taxonomy of anaerobic bacteria. Int. J. Syst. Bacteriol 23:308–315
    [Google Scholar]
  25. Lang E., Lang H. 1972; Spezifische Farbreaktion zum direkten Nachweis der Ameisensaure. Fresenius’. Z. Anal. Chem 260:8–10
    [Google Scholar]
  26. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol 5:109–118
    [Google Scholar]
  27. Mead G. C. 1971; The amino acid fermenting clostridia. J. Gen. Microbiol 67:47–56
    [Google Scholar]
  28. Mejbaum W. 1939; Uber die Bestimmung kleiner Pentosemengen, insbesondere in Derivaten der Adenylsaure. Hoppe Seyler’s Z. Physiol. Chem 258:117–120
    [Google Scholar]
  29. Möllering H., Bergmeyer H. U. 1974; Adenosin. p 1967–1970 In Bergmeyer H. U. ed Methoden der enzymatischen Analyse. , 3rd ed.. Verlag Chemie GmbH, Weinheim; Federal Republic of Germany:
    [Google Scholar]
  30. Postgate J. R. 1966; Media for sulphur bacteria. Lab Pract 15:1239–1244
    [Google Scholar]
  31. Rabinowitz J. C. 1963; Intermediates in purine break down. Methods Enzymol 6:703–713
    [Google Scholar]
  32. Rabinowitz J. C., Barker H. A. 1956; Purine fermentation by Clostridium cylindrosporum. I. Tracer experiments on the fermentation of guanine. J. Biol. Chem 218:147–160
    [Google Scholar]
  33. Rabinowitz J. C., Barker H. A. 1956; Purine fermentation by Clostridium cylindrosporum. II. Purine transformations. J. Biol. Chem 218:161–173
    [Google Scholar]
  34. Rabinowitz J. C., Pricer W. E. 1956; Purine fermentation by Clostridium cylindrosporum. V. Formiminoglycine. J. Biol. Chem 222:537–554
    [Google Scholar]
  35. Rakosky J. Jr, Beck J. V. 1955; Guanine degradation by Clostridium acidiurici. I. Evidence for the presence of guanase. J. Bacteriol 69:563–565
    [Google Scholar]
  36. Reece P., Toth D., Dawes E. A. 1976; Fermentation of purines and their effect on the adenylate energy charge and viability of starved Peptococcus prévotii. J. Gen. Microbiol 97:63–71
    [Google Scholar]
  37. Schafer R., Schwartz A. C. 1976; Catabolism of purines in Clostridium sticklandii. Zbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig. Reihe A 235:165–172
    [Google Scholar]
  38. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic impli-cations. Bacteriol. Rev 36:407–477
    [Google Scholar]
  39. Schulman M., Parker D., Ljungdahl L. G., Wood H. G. 1972; Total synthesis of acetate from C02. V. Determination by mass analysis of the different types of acetate formed from I3C02 by heterotrophic bacteria. J. Bacteriol 109:633–644
    [Google Scholar]
  40. Skerman V. B. D. 1967; A guide to the identification of the genera of bacteria. , 2nd ed.. The Williams & Wilkins Co; Baltimore:
    [Google Scholar]
  41. Skerman V. B. D., McGowan V., Sneath P. H. A. 1980; Approved lists of bacterial names. Int. J. Syst. Bacteriol 30:225–420
    [Google Scholar]
  42. Smith D.S.L., Hobbs G. 1974; Genus Clostridium Prazmowski 1880, 23. p 551–572 In Buchanan R. E., Gibbons N. E. ed Bergey’s manual of determinative bacteriology. , 8th ed.. The Williams & Wilkins Co; Baltimore:
    [Google Scholar]
  43. Smith N. R., Gordon R. E., Clark F. E. 1952 Aerobic sporeforming bacteria. Agricultural monograph 16 U.S. Department of Agriculture; Washington, D.C:
    [Google Scholar]
  44. Stadtman T. C. 1978; Selenium-dependent clostridial glycine reductase. Methods Enzymol 53:373–382
    [Google Scholar]
  45. Stadtman T. C., White F. H. Jr 1954; Tracer studies on ornithine, lysine, and formate metabolism in an amino acid fermenting Clostridium. J. Bacteriol 67:651–657
    [Google Scholar]
  46. Stickland L. H. 1951; The determination of small quantities of bacteria by means of the Biuret reaction. J. Gen. Microbiol 5:698–703
    [Google Scholar]
  47. Stouthamer A. H. 1969; Determination and significance of molar growth yields. p 629–663 In Norris J. R., Ribbons D. W. ed Methods in microbiology. vol 1 Academic Press, Inc; New York:
    [Google Scholar]
  48. Stouthamer A. H. 1973; A theoretical study on the amount of ATP required for synthesis of microbial cell material. Antonie van Leeuwenhoek J. Microbiol. Serol 39:545–565
    [Google Scholar]
  49. Tonomura B., Malkin R., Rabinowitz J. C. 1965; Deoxyribonucleic acid base composition of clostridial species. J. Bacteriol 89:1438–1439
    [Google Scholar]
  50. Vogels G. D., van der Drift C. 1976; Degradation of purines and pyrimidines by microorganisms. Bacteriol. Rev 40:403–468
    [Google Scholar]
  51. Vollbrecht D., El Nawawy M. A., Schlegel H. G. 1978; Excretion of metabolites by hydrogen bacteria. I. Autotrophic and heterotrophic fermentations. Eur. J. Appl. Microbiol 6:145–155
    [Google Scholar]
  52. Waber L. J., Wood H. G. 1979; Mechanism of acetate synthesis from C02 by Clostridium acidiurici. J. Bacteriol 140:468–478
    [Google Scholar]
  53. Wagner R., Andreesen J. R. 1977; Differentiation between Clostridium acidiurici and Clostridium cylin-drosporum on the basis of specific metal requirements for formate dehydrogenase formation. Arch. Microbiol 114:219–224
    [Google Scholar]
  54. Wagner R., Andreesen J. R. 1979; Selenium requirement for active xanthine dehydrogenase from Clostridium acidiurici and Clostridium cylindrospo-rum. Arch. Microbiol 121:255–260
    [Google Scholar]
  55. Walther-Mauruschat A., Arangno M., Mayer F., , and Schlegel H. G. 1977; Micromorphology of Gram-neg-ative hydrogen bacteria. II. Cell envelope, membranes, and cytoplasmic inclusions. Arch. Microbiol 114:101110
    [Google Scholar]
  56. Whiteley H. R. 1952; The fermentation of purines by Micrococcus aerogenes. J. Bacteriol 63:163–175
    [Google Scholar]
  57. Whiteley H. R., Douglas H. C. 1951; The fermentation of purines by Micrococcus. J. Bacteriol 61:605–616
    [Google Scholar]
/content/journal/ijsem/10.1099/00207713-31-2-184
Loading
/content/journal/ijsem/10.1099/00207713-31-2-184
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error