1887

Abstract

Cultures of four species of grown in a complex medium were shifted down to a minimal medium for assaying aminopeptidases and metabolic end products. Cultural conditions were further modified to include both agitation and stationary conditions. Growth rates were determined for each condition to obtain maximal cell yield. Cells were then harvested for intracellular aminopeptidase assay by fluorometric analysis of enzyme activity, and a gas-liquid chromatography analysis was made for extracellular metabolic end products. A high reproducibility was obtained from the aminopeptidase profiles of strains of and including a control consisting of a blind test of previous isolates. The shift down to the minimal medium increased enzyme activity in each case and induced characteristic new peaks in most instances. Gas-liquid chromatography analysis was concentrated on short-chain volatile fatty acids no longer than seven carbons. Butyl ester derivatives were prepared to enhance separation and increase percent recovery of these volatile components. The resulting change in profiles under different physiological conditions indicates a new method for the possible identification of species.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-31-1-43
1981-01-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/31/1/ijs-31-1-43.html?itemId=/content/journal/ijsem/10.1099/00207713-31-1-43&mimeType=html&fmt=ahah

References

  1. Choules G. L., Gray W. R. 1971; Peptidase activity in the membranes of Mycoplasma laidlawii. Biochem. Biophys. Res. Comm 45:849–855
    [Google Scholar]
  2. Chakrabarty A. M. 1976; Plasmids in Pseudomonas. Annu. Rev. Genet 10:7–30
    [Google Scholar]
  3. Doelle H. W. 1969b; Gas chromatographic separation and determination of microquantities of C1-C7 branched and straight chain saturated fatty acids. J. Chromatogr 39:398–406
    [Google Scholar]
  4. Drucker D. B. 1976; Gas-liquid chromatographic chemotaxonomy. p 51–125 In Norris J. R., Ribbons D. W. ed Methods in microbiology, vol. 9. Academic Press, Inc; New York:
    [Google Scholar]
  5. Fugate K. J., Hanse L. B., White O. 1971; Analysis of Clostridium botulinum toxigenic types A, B, and E for fatty acid and carbohydrate content. Appl. Microbiol 21:470–475
    [Google Scholar]
  6. Garner C. W., Behen F. J. 1975; Human liver alanine aminopeptidase. Inhibition by amino acids. Biochemistry 14:3208–3212
    [Google Scholar]
  7. Graevenitz A. V., Weinstein J. 1971; Pathogenic significance of Pseudomonas fluorescens and Pseudomonas putida. Yale J. Biol. Med 44:265–273
    [Google Scholar]
  8. Kageyama M., Sano Y., Shinomiya T. 1979; Suppressor mutation in Pseudomonas aeruginosa. J. Bacteriol 138:748–755
    [Google Scholar]
  9. Kimble C., McCollough M. L., Paterno V. A., , and Anderson A. W. 1969; Comparisons of the fatty acids of proteolytic type B and nonproteolytic types E and F of Clostridium botulinum. Appl. Microbiol 18:883–888
    [Google Scholar]
  10. Lambert M. A., Moss C. W. 1972; Gas-liquid chromatography of short-chain fatty acids on Dexsil 300-GC. J. Chromatogr 74:335–338
    [Google Scholar]
  11. Matheson A. T., Dick A. J., Rollin F. 1970; Aribosomal-bound aminopeptidase in Escherichia coli B: substrate specificity. Can. J. Biochem 48:1292–1296
    [Google Scholar]
  12. Mayhew J. W., Gorbach S. L. 1975; Rapid gas chromatographic technique for presumptive detection of Clostridium botulinum in contaminated foods. Appl. Microbiol 29:297–299
    [Google Scholar]
  13. Mitruka B. M. 1974 Gas chromatography applications in microbiology and medicine John Wiley & Sons, Inc; New York:
    [Google Scholar]
  14. Moss C. W., Samuels S. B. 1974; Short-chain acids of Pseudomonas species encountered in clinical specimens. Appl. Microbiol 27:570–574
    [Google Scholar]
  15. Peterson E. H., Hsu E. J. 1978; Rapid detection of selected gram-negative bacteria by aminopeptidase profiles. J. Food Sci 43:1853–1856
    [Google Scholar]
  16. Pickett M. J., Pederson M. M. 1968; Characterization of bacteria by their degradation of amino acids. Appl. Microbiol 16:1591–1595
    [Google Scholar]
  17. Pickett M. J., Pederson M. M. 1970a; Characterization of saccharolytic non-fermentative bacteria associated with man. Can. J. Microbiol 16:351–362
    [Google Scholar]
  18. Ralston E., Palleroni N. J., Doudoroff M. 1973; Pseudomonas pickettii, a new species of clinical origin related to Pseudomonas solanacearum. Int. J. Syst Bacteriol 23:15–19
    [Google Scholar]
  19. Rose B., Becker J. M., Naider F. 1979; Peptidase activities in Saccharomyces cerevisiae. J. Bacteriol 139:220–224
    [Google Scholar]
  20. Salanitro J. P., Muirhead P. A. 1975; Quantitative method for the gas chromatographic analysis of short-chain monocarboxylic and dicarboxylic acids in fermentation media. Appl. Microbiol 29:374–381
    [Google Scholar]
  21. Samuels S. B., Moss C. W., Weaver R. E. 1973; The fatty acids of Pseudomonas multivorans (Pseu-domonas cepacia), and Pseudomonas kingii. J. Gen. Microbiol 74:275–279
    [Google Scholar]
  22. Sands D. C., Schroth M. N., Hildebrand D. C. 1970; Taxonomy of phytopathogenic pseudomonads. J. Bacteriol 101:9–23
    [Google Scholar]
  23. Stanier R. Y., Palleroni N. J., Doudoroff M. 1966; The aerobic pseudomonads: a taxonomic study. J. Gen. Microbiol 43:159–271
    [Google Scholar]
  24. Wade T. J., Mandle R. J. 1974; New gas chromatographic characterization procedure: preliminary studies on some Pseudomonas species. Appl. Microbiol 27:303–311
    [Google Scholar]
  25. Wagner F. W., Wilkes S. H., Prescott J. M. 1972; Specificity of Aeromonas aminopeptidase toward amino acids and dipeptides. J. Biol. Chem 247:12081210
    [Google Scholar]
  26. Watson R. R. 1976; Substrate specificities of aminopeptidases: a specific method for microbial differentiation. p 1–13 In Norris J. R., Ribbons D. W. ed Methods in microbiology, vol. 9. Academic Press, Inc; New York:
    [Google Scholar]
  27. Westley J. W., Anderson P. J., Close V. A., Halpem B., Lederberg E. M. 1967; Aminopeptidase profiles of various bacteria. Appl. Microbiol 15:822–825
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-31-1-43
Loading
/content/journal/ijsem/10.1099/00207713-31-1-43
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error