1887

Abstract

The electrophoretic patterns of the transaldolases and 6-phosphogluconate dehydrogenases (6PGD) of 1,206 strains, each belonging to one of 24 named species of the genus , were determined by means of starch-gel electrophoresis. All of these strains were previously assigned to species on the basis of their deoxyribonucleic acid homology relationships and were selected so as to include all known phenotypes and habitats. Fourteen electrophoretic forms of transaldolase and 19 of nicotinamide adenine dinucleotide phosphate-dependent 6PGD were identified and numbered. Each strain displayed one band for each enzyme. Glucose-grown cells of the strains and of most of the strains were devoid of detectable levels of 6PGD. The zymograms of more than 60% of the strains studied were species specific. Nearly half of the other strains had significant overlapping of transaldolase and 6PGD patterns, and they were assigned therefore to species on the basis of an additional marker, 3-phosphoglyceraldehyde dehydrogenase production, the results of which are not reported here in detail. Of the species studied, exhibited the greatest variability in electrophoretic types of both transaldolase and 6PGD. Correlations between electrophoretic data, deoxyribonucleic acid homology relationships between the species, and ecology are discussed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-29-4-312
1979-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/29/4/ijs-29-4-312.html?itemId=/content/journal/ijsem/10.1099/00207713-29-4-312&mimeType=html&fmt=ahah

References

  1. Brewer G. T. 1970; An introduction to isozyme techniques. Academic Press; New York:
    [Google Scholar]
  2. Crociani F., Scardovi V., Trovatelli L. D. 1970; Mannitol fermenting bifids from rumen and their DNA homology relationships. Ann. Microbiol 20:101–107
    [Google Scholar]
  3. DeMann J. C., Rogosa M., Sharpe E. M. 1960; A medium for the cultivation of lactobacilli,. J. Appl. Bacteriol 23:130–135
    [Google Scholar]
  4. DeVries W., Gerbrandy S. J., Stouthamer A. H. 1967; Carbohydrate metabolism in Bifidobacterium bifidum.. Biochim. Biophys. Acta 136:415–425
    [Google Scholar]
  5. Georg L. K., Robertstad G. W., Brinkman S. A., Hicklin M. D. 1965; A new pathogenic anaerobic Ac-tinomyces species. J. Infect. Dis 115:88–99
    [Google Scholar]
  6. Gillespie J. H., Kojima K. 1968; The degree of polymorphism in enzymes involved in energy production compared to that in nonspecific enzymes in two Drosophila ananassae populations. Proc. Natl. Acad. Sci. U.S.A 61:582–585
    [Google Scholar]
  7. György P., Norris R. F., Rose C. S. 1954; Bifidus factor. I. A variant of Lactobacillus bifidus requiring a special growth factor. Arch. Biochem. Biophys 48:193–201
    [Google Scholar]
  8. Holdeman L. V., Moore W. E. C. ed 1972; Anaerobe Laboratory manual. Virginia Polytechnic Institute Anaerobe Laboratory; Blacksburg:
    [Google Scholar]
  9. Johnson G. B. 1973; Enzyme polymorphism and bio- systematics: the hypothesis of selective neutrality. Annu. Rev. Ecol. System 4:93–116
    [Google Scholar]
  10. Johnson J. L. 1973; Use of nucleic-acid homologies in the taxonomy of anaerobic bacteria. Int. J. Syst. Bac- teriol 23:308–315
    [Google Scholar]
  11. Kandler O., Lauer E. 1974; Neuere Vorstellungen zur Taxonomie der Bifidobacterien. Zentralbl. Bakte-riol. Parasitenkd. Infektionskr. Hyg. Abt. I Orig. Reihe A 228:29–45
    [Google Scholar]
  12. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin phenol reagent. J. Biol. Chem 193:265–275
    [Google Scholar]
  13. Matteuzzi D., Crociani F. 1973; Urease production and DNA homology in the species Bifidobacterium suis.. Arch. Mikrobiol 94:93–95
    [Google Scholar]
  14. Matteuzzi D., Crociani F., Zani G., Trovatelli L. D. 1971; Bifidobacterium suis n. sp.: a new species of the genus Bifidobacterium isolated from pig feces. Z. Allg. Mikrobiol 11:387–395
    [Google Scholar]
  15. McDonald J. F., Ayala F. J. 1974; Genetic re sponse to environmental heterogeneity. Natura 250:572–573
    [Google Scholar]
  16. Mitsuoka T. 1969; Vergleichende Untersuchungen über die Bifidobakterien aus dem Verdauungstrakt von Menschen und Tieren. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. I Orig 210:52–64
    [Google Scholar]
  17. Mitsuoka T., Morishita Y., Terada A. 1974; Ac-tinomyces eriksonii Georg, Roberstadt, Brinkman and Hicklin 1965 identiseh mit Bifidobacterium adolescen- tis Reuter 1963. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. I Orig. Reihe A. 226:257–263
    [Google Scholar]
  18. Powell J. R. 1971; Genetic polymorphism in varied en vironments. Science 174:1035–1036
    [Google Scholar]
  19. Powell J. R. 1975; Isozymes and non-darwinian evolution: a re-evaluation. p 9–26 In Markert C. ed Isozymes, vol. IV: Genetics and evolution. Academic Press; New York:
    [Google Scholar]
  20. Reuter G. 1963-64; Vergleichende Untersuchungen fiber die Bifidus-Flora im Säuglings- und Erwachsenenstuhl. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. I Orig 191:486–507
    [Google Scholar]
  21. Rogosa M. 1974; Genus Bifidobacterium,. p 669–676 In Buchanan R. E., Gibbons N. E. ed Bergey’s manual of determinative bacteriology, 8th ed. The Williams and Wilkins Co; Baltimore:
    [Google Scholar]
  22. Scardovi V., Crociani F. 1974; Bifidobacteriumcatenulatum, Bifidobacterium dentium, and Bifidobacterium angulatum: three new species and their deoxyribonucleic acid homology relationships. Int. J. Syst. Bacteriol 24:6–20
    [Google Scholar]
  23. Scardovi V., Sgorbati B. 1974; Electrophoretic types of transaldolase, transketolase, and other enzymes in bifidobacteria. Antonie van Leeuwenhoek J. Microbiol. Serol 40:427–440
    [Google Scholar]
  24. Scardovi V., Sgorbati B., Zani G. 1971; Starch gel electrophoresis of fructose 6-phosphate phosphoke- tolase in the genus Bifidobacterium.. J. Bacteriol 106:1036–1039
    [Google Scholar]
  25. Scardovi V., Trovatelli L. D. 1965; The fructose- e-phosphate shunt as peculiar pattern of hexose degradation in the genus Bifidobacterium.. Ann. Microbiol 15:19–29
    [Google Scholar]
  26. Scardovi V., Trovatelli L. D. 1969; New species of bifid bacteria from Apis mellifica L. and Apis indica F. A contribution to the taxonomy and biochemistry of the genus Bifidobacterium.. Zentralbl. Bakteriol. Par- asitenkd. Infektionskr. Hyg. Abt. II 123:64–88
    [Google Scholar]
  27. Scardovi V., Trovatelli L. D. 1974; Bifidobacterium animalis (Mitsuoka) comb. nov. and the “minimum” and “subtile” groups of new bifidobacteria found in sewage. Int. J. Syst. Bacteriol 24:21–28
    [Google Scholar]
  28. Scardovi V., Trovatelli L. D., Biavati B., Zani G. 1979; Bifidobacterium cuniculi, Bifidobacterium choer- inum, Bifidobacterium boum, and Bifidobacterium pseudocatenulatum: four new species and their deoxyribonucleic acid homology relationships. Int. J. Syst. Bacteriol 29:291–311
    [Google Scholar]
  29. Scardovi V., Trovatelli L. D., Crociani F., Sgorbati B. 1969; Bifid bacteria in bovine rumen: B. globosum n. sp. and B. ruminate n. sp. Arch. Mikrobiol 68:278–294
    [Google Scholar]
  30. Scardovi V., Trovatelli L. D., Zani G., Crociani F., Matteuzzi D. 1971; Deoxyribonucleic acid homology relationships among species of the genus Bifi-dobacterium.. Int. J. Syst. Bacteriol 21:276–294
    [Google Scholar]
  31. Scardovi V., Zani G. 1974; Bifidobacterium magnum sp. nov., a large acidophilic bifidobacterium isolated from rabbit feces. Int. J. Syst. Bacteriol 24:29–34
    [Google Scholar]
  32. Scardovi V., Zani G., Trovatelli L. D. 1970; Deoxyribonucleic acid homology among the species of the genus Bifidobacterium isolated from animals. Arch. Mikrobiol 72:318–325
    [Google Scholar]
  33. Sgorbati B., Lenaz G., Casalicchio F. 1976; Pu rification and properties of two fructose-6-phosphate phosphoketolases in Bifidobacterium.. Antonie van Leeuwenhoek J. Microbiol. Serol 42:49–57
    [Google Scholar]
  34. Sgorbati B., Scardovi V. 1979; Immunological relationships among transaldolases in the genus Bifidobacterium.. Antonie van Leeuwenhoek J. Microbiol. Serol 45:129–140
    [Google Scholar]
  35. Sgorbati B., Zani G., Trovatelli L. D., Scardovi V. 1970; Gluconate dissimilation by the bifid bacteria of the honey bee. Ann. Microbiol 20:57–64
    [Google Scholar]
  36. Smithies O. 1955; Zone electrophoresis in starch gels: group variations in the serum proteins of normal human adults. Biochem. J 61:629–641
    [Google Scholar]
  37. Trovatelli L. D., Crociani F., Pedinotti M., scardovi V. 1974; Bifidobacterium pullorum sp. nov.: a new species isolated from chicken feces and a related group of bifidobacteria isolated from rabbit feces. Arch. Microbiol 98:187–198
    [Google Scholar]
  38. Trovatelli L. D., Matteuzzi D. 1976; Presence of bifidobacteria in the rumen of calves fed different ra-tions. Appl. Environ. Microbiol 32:470–473
    [Google Scholar]
  39. Zani G., Biavati B., Crociani F., Matteuzzi D. 1974; Bifidobacteria from the faeces of piglets.. J. Appl. Bacteriol 37:537–547
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-29-4-312
Loading
/content/journal/ijsem/10.1099/00207713-29-4-312
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error