1887

Abstract

This study is a measurement of the moles percent guanine plus cytosine of 34 strains of bacteria belonging or related to the genus All of the strains included in the sampling have been previously studied by numerical taxonomy, which has shown four new classes: H, H, H, and d. The average guanine-plus-cytosine contents for the defined species and of the new classes are: (10 strains), 54.5 mol% (standard deviation, 1.32); (5 strains), 48.1 mol% (standard deviation, 1.0); (syn. ) (1 strain), 52.4 mol% (standard deviation, 0.41); (1 strain), 50.9 mol% (standard deviation, 1.22); (1 strain), 53.5 mol% (standard deviation, 0.29); class H (5 strains), 52.2 mol% (standard deviation, 1.3); class H (5 strains), 53.4 mol% (standard deviation, 1.9); class H (5 strains), 54.2 mol% (standard deviation, 0.1); class d (1 strain), 52.6 mol% (standard deviation, 1.45). The importance of the guanine-plus-cytosine contents for discriminating defined species and new classes is discussed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-28-4-449
1978-10-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/28/4/ijs-28-4-449.html?itemId=/content/journal/ijsem/10.1099/00207713-28-4-449&mimeType=html&fmt=ahah

References

  1. Baptist J. N., Shaw C. R., Mandel M. 1969; Zone electrophoresis of enzymes in bacterial taxonomy. J. Bacteriol. 99:180–188
    [Google Scholar]
  2. Bascomb S., Lapage S. P., Curtis M. A., Willcox W. R. 1974; Identification of bacteria by computer identification of reference strains. J. Gen. Microbiol. 83:271–282
    [Google Scholar]
  3. Belozerskii A. N., Spirin A. B. 1960147 Chargaff E., Davison J. N.ed The nucleic acids: chemistry and biology 3 Academic Press Inc.; New York:
    [Google Scholar]
  4. Colwell R. R., Mandel M. 1964; Adansonian analysis and deoxyribonucleic acid base composition of some gram-negative bacteria. J. Bacteriol 87:1412–1422
    [Google Scholar]
  5. Crosa J. H., Steigerwalt A. G., Fanning G. R., Brenner D. J. 1974; Polynucleotide sequence divergence in the genus Citrobacter. J. Gen. Microbiol. 83:271–282
    [Google Scholar]
  6. De Ley J. 1970; Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J. Bacteriol. 101:738–754
    [Google Scholar]
  7. Falkow S., Ryman I. R., Washington O. 1962; Deoxyribonucleic acid base composition of Proteus and Providence organisms. J. Bacteriol. 83:1318–1321
    [Google Scholar]
  8. Ferragut C., Leclerc H. 1976; Etude comparative des méthodes de détermination du Tm de l’ADN bactérien. Ann. Microbiol (Inst Pasteur) 127A:223–235
    [Google Scholar]
  9. Gavini F., Ferragut C., Lefebvre B., Leclerc H. 1976; Etude taxonomique d’entérobactéries appartenant ou apparentées au genre Enterobacter. Ann. Microbiol (Inst. Pasteur) 127B:317–335
    [Google Scholar]
  10. Gavini F., Lefebvre B., Leclerc H. 1976; Positions taxonomiques d’entérobactéries H2S par rapport au genre Citrobacter. Ann. Microbiol. (Inst. Pasteur) 127A:275–295
    [Google Scholar]
  11. Grimont P. A. D., Grimont F., Dulong de Rosnay H. L. C., Sneath P. H. A. 1977; Taxonomy of the genus Serratia. J. Gen. Microbiol. 98:39–66
    [Google Scholar]
  12. Johnson R., Colwell R. R., Sakazaki R., Tamura K. 1975; Numerical taxonomy study of the Enterobacteriaceae. Int. J. Syst. Bacteriol. 25:12–37
    [Google Scholar]
  13. Leclerc H., Buttiaux R. 1965; Les Citrobacter. Ann. Inst Pasteur (Lille) 16:67–74
    [Google Scholar]
  14. LelRot R. A. 1974 Genus XII: Erwinia,. 332–339 Buchanan R. E., Gibbons N. E.ed Bergey’s manual of determinative bacteriology, 8th. The Williams and Wilkins Co.; Baltimore:
    [Google Scholar]
  15. Mandel M., Marmur J. 1968; Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B:195–206
    [Google Scholar]
  16. Mandel M., Rownd R. 1964 Deoxyribonucleic acid base composition in the Enterobacteriaceae: an evolutionary sequence. 585–597 Leone C. A.ed Taxonomic biochemistry and serology Ronald Press; New York:
    [Google Scholar]
  17. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5:109–118
    [Google Scholar]
  18. Marmur J., Falkow S., Mandel M. 1963; New approaches to bacterial taxonomy. Annu. Rev. Microbiol. 17:329–372
    [Google Scholar]
  19. Ouelette C. A., Burris R. H., Wilson P. W. 1969; Deoxyribonucleic acid base composition of species of Klebsiella, Azotobacter and Bacillus. Antonie van Leeuwenhoek J. Microbiol. Serol. 35:275–286
    [Google Scholar]
  20. Sakazaki R. 1974 Genus VIII: Hafnia,. 325–326 Buchanan R. E., Gibbons N. E.ed Bergey’s manual of determinative bacteriology, 8th. The Williams and Wilkins Co.; Baltimore:
    [Google Scholar]
  21. Schildkraut C. L., Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J. Mol. Biol. 4:430–443
    [Google Scholar]
  22. Starr M. P., Mandel M. 1969; DNA base composition and taxonomy of phytopathogenic and other enterobacteria. J. Gen. Microbiol. 56:113–123
    [Google Scholar]
  23. Veron M., Le Minor L. 1975; Nutrition et taxonomie des Enterobacteriaceae et bactéries voisines. IR. Caractères nutritionnels et différenciation des groupes taxonomiques. Ann. Microbiol. (Inst. Pasteur) 126B:125–147
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-28-4-449
Loading
/content/journal/ijsem/10.1099/00207713-28-4-449
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error