1887

Abstract

Five new strains of yellow-pigmented, gram-negative, motile, hydrogen-oxidizing bacteria were isolated; each served as a host for simultaneously isolated bacteriophages. These isolates and two additional strains were compared with other gram-negative, hydrogen-oxidizing bacteria with respect to morphology; nutritional and biochemical properties; growth parameters; cytochrome content; pigment production; susceptibility to bacteriophages, bacteriostatic agents, and antibiotics; deoxyribonucleic acid base composition; and deoxyribonucleic acid-deoxyribonucleic acid homology. Six of the strains were characterized by a high degree of interstrain similarity and were found to be related to However, due to basic differences between these strains and , the former are regarded as comprising a new species for which, because of its moderate relationship to , the name is proposed. The type strain of , GA3, has been deposited with the Deutsche Sammlung von Mikroorganismen in Göttingen under the number DSM 1034.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-28-1-82
1978-01-01
2022-01-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/28/1/ijs-28-1-82.html?itemId=/content/journal/ijsem/10.1099/00207713-28-1-82&mimeType=html&fmt=ahah

References

  1. Andrewes A. G., Herzberg S., Liaaen-Jenaen S., Starr M. P. 1973; Xanthomonas pigments. 2. The Xanthomonas “carotenoids”—non-carotenoid, bromi- nated aryl-polyene esters. Acta Chem. Scand. 27:2383–2395
    [Google Scholar]
  2. Auling G., Mayer F., Schlegel H. G. 1977; Isolation and partial characterization of normal and defective bacteriophages for Pseudomonas pseudoflava. Arch. Microbiol. 115:237–248
    [Google Scholar]
  3. Bergmeyer H. U. 1974 Methoden der enzymatischen Analyse. Verlag Chemie; Weinheim:
    [Google Scholar]
  4. Cowan S. T. 1974 Cowan and Steel’s manual for the identification of medical bacteria. , 2nd. Cambridge University Press; New York:
    [Google Scholar]
  5. Davis D. H., DoudorofT M., Stanier R. Y., Mandel M. 1969; Proposal to reject the genus Hydrogen- omonas: taxonomic implications. Int. J. Syst. Bacteriol. 19:375–390
    [Google Scholar]
  6. Davis D. H., Stanier R. Y., DoudorofT M., Mandel M. 1970; Taxonomic studies on some Gram-negative polarly flagellated “hydrogen bacteria” and related species. Arch. Mikrobiol. 70:1–13
    [Google Scholar]
  7. DeLey J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA-hybridization from renaturation rates. Eur. J. Biochem. 12:133–142
    [Google Scholar]
  8. Detrick-Hooks B., Kennedy E. R-. 1974; Immunological cross-reactions among strains of Hydrogeno- monas, Pseudomonas and Alcaligenes. Antonie van Leeuwenhoek J. Microbiol. Serol. 40:577–584
    [Google Scholar]
  9. Doudoroff M. 1940; The oxidative assimilation of sugars and related substrates by Pseudomonas saccharophila with a contribution to the problem of the direct respiration of di- and polysaccharides. Enzymologia 9:52–72
    [Google Scholar]
  10. Falk J. E. 1964 Porphyrins and metalloporphyrins. BBA Library 2 Elsevier; Amsterdam:
    [Google Scholar]
  11. Ghosh H. P., Preiss J. 1965; The isolation and characterization of glycogen from Arthrobacter sp. NRRLB 1973. Biochim. Biophys. Acta 104:274–277
    [Google Scholar]
  12. Gordon R. E., Haynes W. C., Hor-Nay Pang C. 1973 The genus Bacillus. Agriculture handbook no. 247 U.S. Department of Agriculture; Washington, D.C:
    [Google Scholar]
  13. Habs I. 1975; Untersuchungen uber die O-Antigene von Pseudomonas aeruginosa. Z. Hyg. Infektionskr. 144:218–228
    [Google Scholar]
  14. Jensen A., Liaaen-Jensen S. 1959; Quantitative paper chromatography of carotenoids. Acta Chem. Scand. 13:1863–1868
    [Google Scholar]
  15. Jüttner R. R., Lafferty L. M., Knackmuss H. J. 1975; A simple method for the determination of poly- β-hydroxybutyric acid in microbial biomass. Eur. J. Appl. Microbiol. 1:233–237
    [Google Scholar]
  16. Kluyver A. J., Manten A. 1942; Some observations on the metabolism of bacteria oxidizing molecular hydrogen. Antonie van Leeuwenhoek J. Microbiol. Serol. 8:71–85
    [Google Scholar]
  17. Kraft M. 1976 Struktur- und Absorptions- spektroskopie organischer Naturstoffe. 140 Steinkopff; Darmstadt:
    [Google Scholar]
  18. Kucsera G. 1973; Proposal for standardization of the designations used for serotypes of Erysipelothrix rhu- siophathiae (Migula) Buchanan. Int. J. Syst. Bacteriol. 23:184–188
    [Google Scholar]
  19. Liaaen-Jensen S. 1971 Isolation, reactions. 61–188 Isler Otto. ed Carotenoids. Verlag Birkhäuser; Basel:
    [Google Scholar]
  20. Lounatmaa K., Mäkelä P. H., Sarvas M. 1976; Effect of polymyxin on the ultrastructure of the outer membrane of wild-type and polymyxin-resistant strains of Salmonella. J. Bacteriol. 127:1400–1407
    [Google Scholar]
  21. Mandel M., Schildkraut C. L., Marmur J. 1968; Use of CsCl density gradient analysis for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B:184–195
    [Google Scholar]
  22. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5:109–118
    [Google Scholar]
  23. Newton N. 1967; A soluble cytochrome containing c-type and a2-type haem groups from Micrococcus denitrificans. Biochem. J. 105:21c
    [Google Scholar]
  24. Nybraaten G., Liaaen-Jensen S. 1974; Bacterial carotenoids. XLIII. Zeaxanthin mono and dirhamnoside. Acta Chem. Scand. Ser. B 28:1219–1224
    [Google Scholar]
  25. Ohara S., Sato T., Homma M. 1974; Serological studies on Francisella tularensis, Francisella novi- cida, Yersinia philomiragia, and Brucella abortus. Int. J. Syst. Bacteriol. 24:191–196
    [Google Scholar]
  26. Palleroni N. J., Ballard R. W., Ralston E., Doudoroff M. 1972; Deoxyribonucleic acid homologies among some Pseudomonas species. J. Bacteriol. 110:1–11
    [Google Scholar]
  27. Probst I., Schlegel H. G. 1976; Respiratory components and oxidase activities in Alcaligenes eutrophus. Biochim. Biophys. Acta 440:412–428
    [Google Scholar]
  28. Sapshead L. M., Wimpenny J. W. T. 1972; The influence of oxygen and nitrate on the formation of the cytochrome pigments of the aerobic and anaerobic respiratory chain of Micrococcus denitrificans. Biochim. Biophys. Acta 267:388–397
    [Google Scholar]
  29. Savel’eva N. D., Zhilina T. N. 1968; Taxonomy of hydrogen bacteria. Mikrobiologiya 37:68–73
    [Google Scholar]
  30. Schatz A., Bovell C. R. 1952; Growth and hydrogenase activity of a new bacterium, Hydrogenomonas facilis. J. Bacteriol. 63:87–98
    [Google Scholar]
  31. Schlegel H. G. 1976; The physiology of hydrogen bacteria. Antonie van Leeuwenhoek J. Microbiol. Serol. 42:181–201
    [Google Scholar]
  32. Schlegel H. G., Kaltwasser H., Gottschalk G. 1961; Ein Submersverfahren zur Kultur wasserstoffoxidierenden Bakterien: wachstumsphysiologische Untersuchungen. Arch. Mikrobiol. 38:209–222
    [Google Scholar]
  33. Schubert R. H. W. 1960; Untersuchungen über die Merkmale der Gattung Aeromonas. Zentralbl. Bakte- riol Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig. 180:310–327
    [Google Scholar]
  34. Sigal N., Cattaneo J., Segel I. H. 1964; Glycogen accumulation by wild-type and uridine diphosphate glucose pyrophosphorylase-negative strains of Escherichia coli. Arch. Biochem. Biophys. 108:440–451
    [Google Scholar]
  35. Stahl E. 1967 Dünnschicht Chromatographie. 2. Aufl. Springer-Verlag; Heidelberg:
    [Google Scholar]
  36. Starrier R. Y., Palleroni N. J., Doudoroff M. 1966; The aerobic pseudomonads: a taxonomic study. J. Gen. Microbiol. 43:159–271
    [Google Scholar]
  37. Walther-Mauruschat A., Aragno M., Mayer F., Schlegel H. G. 1977; Micromorphology of Gram-negative hydrogen bacteria. II. Cell envelope, membranes and cytoplasmic inclusions. Arch. Microbiol 114:101–110
    [Google Scholar]
  38. Weston J. A., Knowles C. J. 1973; A soluble CO-binding c-type cytochrome from the marine bacterium Beneckea natriegens. Biochim. Biophys. Acta 305:11–18
    [Google Scholar]
  39. Zevenhuizen L. P. T. M., Ebbink A. G. 1974; Interrelations between glycogen, poly-β-hydroxybutyric acid and lipids during accumulation and subsequent utilization in a Pseudomonas. Antonie van Leeuwenhoek J. Microbiol. Serol. 40:103–120
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-28-1-82
Loading
/content/journal/ijsem/10.1099/00207713-28-1-82
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error