1887

Abstract

Respiratory quinones and the ability to use fumarate as a terminal electron acceptor in anaerobic respiration were investigated in 49 bacterial strains representing a variety of conventional or species. The organisms examined were subdivided into two categories according to their quinones. (i) Ubiquinones are used by the neotype strain of and by cultures representing , and some unnamed species. (ii) Menaquinones are produced by both typical strains and many so-called or “” cultures. Several members of category ii exhibited low to medium reduced nicotinamide adenine dinucleotide-fumarate reductase activities when grown in unaerated complex media supplemented with fumarate. In addition, with , “group IIb” organisms, and a strain of , the yields of oxygen-limited growth were markedly increased by fumarate, indicating an energetic use of fumarate respiration. On the basis of these findings, restriction of the genus to “low-guanine-plus-cytosine” organisms containing ubiquinones and resembling is proposed. The incorporation of some former “flavobacteria” into a natural group of organisms containing menaquinones and placement in the vicinity of the guanine-plus-cytosine ratio are discussed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-28-1-14
1978-01-01
2023-02-01
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/28/1/ijs-28-1-14.html?itemId=/content/journal/ijsem/10.1099/00207713-28-1-14&mimeType=html&fmt=ahah

References

  1. American Type Culture Collection 1974 Catalogue of strains. , 11th. American Type Culture Collection; Rockville, Md:
    [Google Scholar]
  2. Carr N. G., Exell G., Flynn V., Hallaway M., Talukdar S. 1967; Minor quinones of some myxophyceae. Arch. Biochem. Biophys. 120:503–507
    [Google Scholar]
  3. Colwell R. R., Citarella R. V., Chen P. K. 1966; DNA base composition of Cytophaga marinoflava n. sp. determined by buoyant density measurements in cesium chloride. Can. J. Microbiol. 12:1099–1103
    [Google Scholar]
  4. DeLey J. 1969; Compositional nucleotide distribution and the theoretical prediction of homology in bacterial DNA. J. Theor. Biol. 22:89–116
    [Google Scholar]
  5. DeLey J., van Muylem J. 1963; Some applications of deoxyribonucleic acid base composition in bacterial taxonomy. Antonie van Leeuwenhoek J. Microbiol. Serol. 29:344–358
    [Google Scholar]
  6. Denis F. A., D’Qultremont P. A., Debagq J. J., Cherel J. M., Brisou J. 1975; Distribution des ubiquinones (coenzyme Q) chez les bacilles à Gram négatif. C. R. Soc. Biol. 2:380–382
    [Google Scholar]
  7. Dunphy P. J., Phillips P. G., Brodie A. F. 1971; Separation and identification of menaquinones from microorganisms. J. Lipid Res. 12:442–449
    [Google Scholar]
  8. Edelman M., Swinton D., Schiff J. A., Epstein H. T., Zeldin B. 1967; Deoxyribonucleic acid base of the blue-green algae (Cyanophyta). Bacteriol. Rev. 31:315–331
    [Google Scholar]
  9. Hollander R., Mannheim W. 1975; Characterization of hemophilic and related bacteria by theii respiratory quinones and cytochromes. Int. J. Syst. Bacteriol. 25:102–107
    [Google Scholar]
  10. Kleinig H., Reichenbach H., Theobald N., Achenbach H. 1974; Flexibacter elegans and Myxococeus fulvus’. aerobic gram-negative bacteria containing menaquinones as the only isoprenoid quinones. Arch. Microbiol. 101:91–93
    [Google Scholar]
  11. Kroger A., Dadâk V., Klingenberg M., Diemer F. 1971; On the role of quinones in bacterial electron transport. Eur. J. Biochem. 21:322–333
    [Google Scholar]
  12. Lapage S. P., Shelton J. E., Mitchell T. G. 1970 Media for the maintenance and preservation of bacteria. 1–133 Norris J. R., Ribbons D. W.ed Methods in microbiology 3A Academic Press Inc.; London:
    [Google Scholar]
  13. Leadbetter E. R. 1974 Genus I. Cytophaga Winogradsky 1929. 101–105 Buchanan R. E., Gibbons N. E.ed Bergey’s manual of determinative bacteriology, 8th. The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  14. McDermott J. C. B., Britton G., Godwin T. W. 1973; Effect of inhibitors on zeaxanthin synthesis in a Flavobacterium. J. Gen. Microbiol. 77:161–171
    [Google Scholar]
  15. McMeekin T. A., Patterson J. T., Stewart D. B., Murray J. G. 1973; The metabolism of amino compounds by some gram negative yellow pigmented rods. J. Appl. Bacteriol. 36:101–108
    [Google Scholar]
  16. McMeekin T. A., Stewart D. B., Murray J. G. 1972; The adansonian taxonomy and the deoxyribonucleic acid base composition of some gram-negative, yellow pigmented rods. J. Appl. Bacteriol. 35:129–137
    [Google Scholar]
  17. Mandel M., Leadbetter E. R. 1965; Deoxyribonu cleic acid base composition of myxobacteria. J. Bacteriol. 90:1795–1796
    [Google Scholar]
  18. Mandel M., Lewin R. A. 1969; Deoxyribonucleic acid base composition of flexibacteria. J. Gen. Microbiol. 58:171–178
    [Google Scholar]
  19. Mannheim W., Stieler W., Wolf G., Zabel R. 1978; Taxonomic significance of respiratory quinones and fumarate respiration in Actinobacillus and Pasteurella. Int. J. Syst. Bacteriol. 28:7–13
    [Google Scholar]
  20. Mitchell T. G., Hendrie M. S., Shewan J. M. 1969; The taxonomy, differentiation and identification of Cytophaga species. J. Appl. Bacteriol. 32:40–50
    [Google Scholar]
  21. Owen R. J., Lapage S. P. 1974; A comparison of strains of King’s group lib of Flavobacterium with Flavobacterium meningosepticum. Antonie van Leeuwenhoek J. Microbiol. Serol. 40:255–264
    [Google Scholar]
  22. Owen R. J., Snell J. J. S. 1976; Deoxyribonucleic acid reassociation in the classification of flavobacteria. J. Gen. Microbiol. 93:89–102
    [Google Scholar]
  23. Perry L. B. 1973; Gliding motility in some non-spreading flexibacteria. J. Appl. Bacteriol. 36:227–232
    [Google Scholar]
  24. Sottile M. J., Baldwin J. N., Weaver R. E. 1973; Deoxyribonucleic acid hybridization studies on Flavobacterium meningosepticum. Appl. Microbiol 26:535–539
    [Google Scholar]
  25. Weeks O. B. 1974 Genus Flavobacterium Bergey et al. 1923. 357–364 Buchanan R. E., Gibbons N. E.ed Bergey’s manual of determinative bacteriology, 8th. The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  26. White D. C., Smith L. 1962; Hematin enzymes of Haemophilus parainfluenzae. J. Biol. Chem. 237:1332–1336
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-28-1-14
Loading
/content/journal/ijsem/10.1099/00207713-28-1-14
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error