1887

Abstract

A new genus of fastidiously anaerobic bacteria which produce a homoacetic fermentation is described. Cells are gram-positive, oval-shaped, short rods which are actively motile by means of one or two subterminal flagella. Hydrogen is oxidized, and carbon dioxide is reduced to acetic acid. Organic substrates which are fermented in a mineral medium include fructose, glucose, lactate, glycerate, and formate. Pantothenate is required as a growth factor. The deoxyribonucleic acid base composition of the type species is 39 mol% guanine plus cytosine. The name is proposed for this new genus, which is tentatively placed in the family . The type species, sp. nov., is named in honor of Harland G. Wood. The type strain of is WB1 (= ATCC 29683 and DSM 1030).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-27-4-355
1977-10-01
2024-11-10
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/27/4/ijs-27-4-355.html?itemId=/content/journal/ijsem/10.1099/00207713-27-4-355&mimeType=html&fmt=ahah

References

  1. Andreesen J. R., Gottschalk G., Schlegel H. G. 1970; Clostridium formicoaceticum nov. spec, isolation, description and distinction from C. aceticum and C. thermoaceticum. Arch. MikrobioL 72:154–174
    [Google Scholar]
  2. Balch W. E., Wolfe R. S. 1976; A new approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl. Environ. Microbiol. 32:781–791
    [Google Scholar]
  3. Bryant M. P., McBride B. C., Wolfe R. S. 1968; Hydrogen-oxidizing methane bacteria. I. Cultivation and methanogenesis. J. Bacteriol. 95:1118–1123
    [Google Scholar]
  4. Decker V. K., Jungermann K., Thauer R. K. 1970; Energy production in anaerobic organisms. Angew. Chern. Int. Ed. Engl. 9:138–158
    [Google Scholar]
  5. Fontaine F. E., Peterson W. H., McCoy E., Johnson M. J., Ritter G. J. 1942; A new type of glucose fermentation by Clostridium thermoaceticum n. sp.. J. Bacteriol. 43:701–715
    [Google Scholar]
  6. Fischer F., Lieske R., Winzer K. 1932; Biologische Gasreaktionen. II. Mitteilung: Über die Bildung von Essigsäure bei der biologischen Umsetzung von Kohlenoxyd und Kohlensäure mit Wasserstoff zu Methan. Biochem. Z. 245:2–12
    [Google Scholar]
  7. Karlsson J. L., Volcani B. E., Barker H. A. 1948; The nutritional requirements of Clostridium aceticum. J. Bacteriol. 56:781–782
    [Google Scholar]
  8. Ljungdahl L. G., Wood H. G. 1969; Total synthesis of acetate from CO2 by heterotrophic bacteria. Annu. Rev. Microbiol. 23:515–535
    [Google Scholar]
  9. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3:208–218
    [Google Scholar]
  10. Nelson N. 1944; A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chern. 153:375–380
    [Google Scholar]
  11. O’Brien W. E., Lungdahl L. G. 1972; Fermentation of fructose and synthesis of acetate from carbon dioxide by Clostridium formicoaceticum. J. Bacteriol. 109:626–632
    [Google Scholar]
  12. Rose I. A., Grunberg-Manago M., Korey S. R., Ochoa S. 1954; Enzymatic phosphorylation of acetate. J. Biol. Chern. 211:737–756
    [Google Scholar]
  13. Schildkraudt C. L., Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J. Mol. Biol. 4:430–443
    [Google Scholar]
  14. Schulman M., Ghambeer R. K., Ljungdahl L. G., Wood H. G. 1973; Total synthesis of acetate from CO2. VIL Evidence with Clostridium thermoaceticum that the carboxyl of acetate is derived from the carboxyl of pyruvate by transcarboxylation and not by fixation of CO2. J. Biol. Chern. 248:6255–6261
    [Google Scholar]
  15. Schulman M., Parker D., Ljungdahl L. G., Wood H. G. 1972; Total synthesis of acetate from CO2. V. Determination by mass analysis of the different types of acetate formed from 1:’CO2 by heterotrophic bacteria. J. Bacteriol. 109:633–644
    [Google Scholar]
  16. Wieringa K. T. 1936; Over het verdwijnen van waterstof en koolzuur onder anaerobe voorwarden. Antonie van Leeuwenhoek J. Microbiol. Serol. 3:263–273
    [Google Scholar]
  17. Wieringa K. T. 1940; The formation of acetic acid from carbon dioxide and hydrogen by anaerobic spore-forming bacteria. Leeuwenhoek Antonie van. J. Microbiol. Serol. 6:251–262
    [Google Scholar]
  18. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J. Biol. Chern. 238:2882–2886
    [Google Scholar]
/content/journal/ijsem/10.1099/00207713-27-4-355
Loading
/content/journal/ijsem/10.1099/00207713-27-4-355
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error