1887

Abstract

A new genus and species of obligately methylotrophic bacteria are described. These bacteria are nonmotile, gram-negative rods occurring singly and in pairs. Only methanol and methylamine can support growth. Formaldehyde fixation occurs mainly via the 3-hexulose phosphate pathway, and cell extracts contain a glutathione-independent, nicotinamide adenine dinucleotide-linked formaldehyde dehydrogenase. The deoxyribonucleic acid base composition is 54.1 mol% guanine plus cytosine. Nitrogen-limited cells accumulate over 5% of their dry weight as a glycogen-like reserve material. This polysaccharide is a homoglucan which is similar to glycogen in its iodine-staining properties and its degree of degradation by phosphorylase . Some of the glucose molecules are α-1,4 linked, and the presence of other types of bonds in the glucan is implied. The name of the genus proposed for these bacteria is gen. nov. The name of the type species, sp. nov., refers to the ability of this species to form a glycogen-like reserve material. The type strain of is T-11 (= ATCC 29475).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-27-3-247
1977-07-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/27/3/ijs-27-3-247.html?itemId=/content/journal/ijsem/10.1099/00207713-27-3-247&mimeType=html&fmt=ahah

References

  1. Ameniya K. 1972; Absence of glucokinase in Methanomonas sp. as a cause for their inability to grow on glucose. Can. J. Microbiol. 18:1907–1913
    [Google Scholar]
  2. Anthony C. 1975; The biochemistry of methylotrophic micro-organisms. Sci. Prog. Oxford 62:167–206
    [Google Scholar]
  3. Anthony C., Zatman L. J. 1964; The microbial oxidation of methanol. 2. The methanol-oxidizing enzyme of Pseudomonas sp. M 27. Biochem. J. 92:614621
    [Google Scholar]
  4. Archibald A. R., Fleming I. D., Liddle A. M., Manners D. J., Mercer G. A., Wright A. 1961; a-1,4- Glucosans. XI. The absorption spectra of glycogen- and amylopectin-iodine complexes. J. Chem. Soc.1183–1190
    [Google Scholar]
  5. Chen B. J., Hirt W., Lin H. C., Tsao G. T. 1977; Growth characteristics of a new methylomonad. Appl. Environ. Microbiol. 33:269–274
    [Google Scholar]
  6. Colby J., Zatman L. J. 1972; Hexose phosphate synthetase and tricarboxylic acid-cycle enzymes in bacterium 4B6, an obligate methylotroph. Biochem. J. 128:1373–1376
    [Google Scholar]
  7. Colby J., Zatman L. J. 1973; Trimethylamine metabolism in obligate and facultative methylotrophs. Biochem. J. 132:101–112
    [Google Scholar]
  8. Dahl J. S., Mehta R. J., Hoare D. S. 1972; New obligate methylotroph. J. Bacteriol. 109:916–921
    [Google Scholar]
  9. Davies S. L., Whittenbury R. 1970; Fine structure of methane and other hydrocarbon-utilizing bacteria. J. Gen. Microbiol. 61:227–232
    [Google Scholar]
  10. Dawes E. A., Senior P. J. 1973 The role and regulation of energy reserve polymers in micro-organisms. 135–266 Rose A. H., Tempest D. W.ed Advances in microbial physiology 10 Academic Press Inc.; New York:
    [Google Scholar]
  11. Eady R. R., Large P. J. 1968; Purification and properties of an amine dehydrogenase from Pseudomonas AM 1 and its role in growth on methylamine. Biochem. J. 106:245–255
    [Google Scholar]
  12. Johnson P. A., Quayle J. R. 1964; Microbial growth on C,-compounds. 6. Oxidation of methanol, formaldehyde, and formate by methanol-grown Pseudomonas AM 1. Biochem. J. 93:281–290
    [Google Scholar]
  13. Katz J., Hassid W. Z. 1951; Arsenolysis of amylose and amylopectin. Arch. Biochem. 30:272–281
    [Google Scholar]
  14. Kouno K., Ozaki A. 1975 Distribution and identification of methanolutilizing bacteria. 11–21 Microbial growth on 0,-compounds Nakanishi Printing Co., Ltd.; Kyoto, Japan:
    [Google Scholar]
  15. Kung H. F., Wagner C. 1970; Oxidation of Cj compounds by Pseudomonas sp. MS. Biochem. J. 116:357–365
    [Google Scholar]
  16. Large P. J., Quayle J. R. 1963; Microbial growth on Ct compounds. 5. Enzyme activities in extracts of Pseudomonas AM 1. Biochem. J. 87:386–396
    [Google Scholar]
  17. Law J. H., Slepecky R. A. 1961; Assay of poly-/3- hydroxybutyric acid. J. Bacteriol. 82:33–36
    [Google Scholar]
  18. Leadbetter E. R. 1974 Methylomonadaceae. 627629 Buchanan R. E., Gibbons N. E.ed Bergey’s manual of determinative bacteriology, 8th. The Williams and Wilkins Co.; Baltimore:
    [Google Scholar]
  19. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275
    [Google Scholar]
  20. Maneval W. E. 1941; Staining bacteria and yeasts with acid dyes. Stain Technol. 16:13–19
    [Google Scholar]
  21. Mandel M. 1966; Deoxyribonucleic acid base composition in the genus Pseudomonas. J. Gen. Microbiol. 43:273–292
    [Google Scholar]
  22. Marmur J. 1961; A procedure for the isolation of deoxy ribonucleic acid from micro-organisms. J. Mol. Biol. 3:208–218
    [Google Scholar]
  23. Marshall J. J. 1974 Application of enzymic methods to the structural analysis of polysaccharides. 257–370 Tipson R. S., Horton D.ed Advances in carbohydrate chemistry and biochemistry 30 Academic Press Inc.; New York:
    [Google Scholar]
  24. Mehta R. J. 1973; Studies on methanol-oxidizing bacteria. 1. Isolation and growth studies. Antonie van Leeuwenhoek. J. Microbiol. Serol. 39:295–302
    [Google Scholar]
  25. Patt T. E., Cole G. C., Bland J., Hanson R. S. 1974; Isolation and characterization of bacteria that grow on methane and organic compounds as sole sources of carbon and energy. J. Bacteriol 120:955964
    [Google Scholar]
  26. Patt T. E., Cole G. C., Hanson R. S. 1976; Methylobacterium, a new genus of facultatively methylotrophic bacteria. Int. J. Syst. Bacteriol. 26:226–229
    [Google Scholar]
  27. Quayle J. R. 1972 The metabolism of one-carbon compounds by microorganisms. 119–203 Rose A. H., Tempest D. W.ed Advances in microbial physiology 7 Academic Press Inc.; New York:
    [Google Scholar]
  28. Ribbons D. W., Harrison J. E., Wadzinski A. M. 1970; Metabolism of single carbon compounds. Annu. Rev. Microbiol. 24:135–158
    [Google Scholar]
  29. Schaeffer A. B., Fulton McD. 1933; A simplified method of staining endospores. Science 77:194
    [Google Scholar]
  30. Shenna J., Zweig G. 1971 Paper chromatography and electrophoresis. 2158 Academic Press Inc.; New York:
    [Google Scholar]
  31. Sigal N., Cattaneo J., Segel I. H. 1964; Glycogen accumulation by wild-type and uridine diphosphate glucose pyrophosphorylase-negative strains of Escherichia coli. Arch. Biochem. Biophys. 108:440–451
    [Google Scholar]
  32. Stanier R. Y., Doudoroff M., Kunisawa R., Contopoulou R. 1959; The role of organic substrates in bacterial photosynthesis. Proc. Natl. Acad. Sci. U.S.A. 45:1246–1260
    [Google Scholar]
  33. Strom T., Ferenci T., Quayle J. R. 1974; The carbon assimilation pathways of Methylococcus capsulatus, Pseudomonas methanica, and Methylosinus trichosporum (OB3B) during growth on methane. Biochem. J. 144:465–476
    [Google Scholar]
  34. Whittenbury R., Phillips K. C., Wilkinson J. F. 1970; Enrichment isolation, and some properties of methane-utilizing bacteria. J. Gen. Microbiol. 61:205–218
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-27-3-247
Loading
/content/journal/ijsem/10.1099/00207713-27-3-247
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error