1887

Abstract

We prepared hybrids between C-labeled ribosomal ribonucleic acid (rRNA) from either ICPB TT111 or ICPB TR7, and deoxyribonucleic acid (DNA) from a great variety of reference gramnegative and gram-positive bacteria. Each hybrid was described by (i) its the temperature at which 50% of the hybrid was denatured, and (ii) percentage of rRNA binding, i.e., micrograms of C-labeled rRNA duplexed per 100 μg of filter-fixed DNA. Each taxon occupied a definite area on the rRNA similarity map. The size and shape of this area depended on the phenotypic and genetic heterogeneity of the taxon. There appeared to be a correlation between of the heterologous hybrids and the overall phenotypic similarities of the organisms and taxa involved. values above 65C were taxonomically most meaningful. DNA: rRNA hybridizations condensed all strains from a genus in one narrow cluster; the method had little resolution to distinguish species within a genus, but it seemed to be a very useful approach to detect remote relationships at the inter- and suprageneric level, for taxonomic and identification purposes. The hybrid parameters of , two misnamed “” strains from leaf-nodulating plants, two misnamed agrobacteria from the Baltic Sea, and a few misnamed “” strains were all in the vicinity of and . We suggest that all of these organisms are remote relatives and belong in the family of the NCIB 9749 is misnamed; it is an . Several organisms which had been misnamed formed DNA: rRNA hybrids with properties outside the area.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-27-3-222
1977-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/27/3/ijs-27-3-222.html?itemId=/content/journal/ijsem/10.1099/00207713-27-3-222&mimeType=html&fmt=ahah

References

  1. Ahrens R. 1968; Taxonomische Untersuchungen an stembildenden Agrobacterium-Arten aus der westlichen Ostzee. Kiel. Meeresforsch. 24:147–173
    [Google Scholar]
  2. Ahrens R., Rheinheimer G. 1967; Ueber einige sternbildende Bakterien aus der Ostsee. Kiel. Meeresforsch. 23:127–136
    [Google Scholar]
  3. Ambler R. P. 1973; Bacterial cytochromes c and molecular evolution. Syst. Zool. 22:554–565
    [Google Scholar]
  4. Bettelheim K. A., Gordon J. F., Taylor J. 1968; The detection of a strain of Chromobacterium lividum in the tissues of certain leaf-nodulated plants by the immunofluorescence technique. J. Gen. Microbiol. 54:177–184
    [Google Scholar]
  5. Bousfield I. J., Graham S. D.ed 1975 The national collection of industrial bacteria, catalogue of strains. Her Majesty’s Statistics Office; London:
    [Google Scholar]
  6. Bray G. A. 1960; A simple efficient liquid scintillator for counting aqueous solutions in a liquid scintillation counter. Anal. Biochem. 1:279–285
    [Google Scholar]
  7. Brenner D. J. 1973; Deoxyribonucleic acid reassociation in the taxonomy of enteric bacteria. Int. J. Syst. Bacteriol. 23:298–307
    [Google Scholar]
  8. Brown N. 1934; A gall similar to crown gall produced on Gypsophila by a new bacterium. J. Agric. Res. 48:1099–1112
    [Google Scholar]
  9. Buchanan R. E., Gibbons N. E.ed 1974 Bergey’s manual of determinative bacteriology. The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  10. Burton K. 1956; A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem. J. 62:315–323
    [Google Scholar]
  11. Crombach W. H. J. 1972; DNA base composition of soil arthrobacters and other coryneforms from cheese and sea fish. Antonie van Leeuwenhoek J. Microbiol. Serol. 38:105–120
    [Google Scholar]
  12. Dayhoff M. O. 1972 Atlas of protein sequence and structure. 5 National Biomedical Research Foundation; Silver Spring, Md:
    [Google Scholar]
  13. De Ley J. 1962; Comparative biochemistry and enzymology in bacterial classification. 164–195 Ainsworth G. C., Sneath P. H. A.ed Microbial classification12th Symposium of the Society for General Microbiology Cambridge University Press; Cambridge, England:
    [Google Scholar]
  14. De Ley J. 1968 Molecular biology and bacterial phylogeny. 103–156 Dobzhansky T., Hecht M. K., Steere W. C.ed Evolutionary biology 2 Appleton-Century-Crofts; New York:
    [Google Scholar]
  15. De Ley J. 1968; DNA base composition and classification of some more free-living nitrogen-fixing bacteria. Antonie van Leeuwenhoek J. Microbiol. Serol. 34:66–70
    [Google Scholar]
  16. De Ley J. 1972; Agrobacterium: intrageneric relationships and evolution. 251–259Proceedings of the Third International Conference on Plant Pathology and Bacteriology, Wageningen1971Pudoc, Wageningen, the Netherlands
    [Google Scholar]
  17. De Ley J. 1974; Phylogeny of procaryotes. Taxon 23:291–300
    [Google Scholar]
  18. De Ley J., Bernaerts M., Rassel A., Guilmot J. 1966; An approach to an improved taxonomy of the genus Agrobacterium. J. Gen. Microbiol. 43:7–17
    [Google Scholar]
  19. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem 12:133–142
    [Google Scholar]
  20. De Ley J., De Smedt J. 1975; Improvements of the membrane filter method for DNA:rRNA hybridization. Antonie van Leeuwenhoek J. Microbiol. Serol. 41:287–307
    [Google Scholar]
  21. De Ley J., Kersters K. 1975 Biochemical evolution in bacteria. 1–77 Florkin M., Stotz E. H.ed Comprehensive biochemistry 29B Elsevier Scientific Publishing Co.; Amsterdam:
    [Google Scholar]
  22. De Ley J., Kersters K., Khan-Matsubara J., Shewan J. M. 1970; Comparative D-gluconate metabolism and DNA base composition in Achromobacter and Alcaligenes. Antonie van Leeuwenhoek J. Microbiol. Serol. 36:193–207
    [Google Scholar]
  23. De Ley J., Rassel A. 1965; DNA base composition, flagellation and taxonomy of the genus Rhizobium. J. Gen. Microbiol. 41:85–91
    [Google Scholar]
  24. De Ley J., Tytgat R. 1970; Evaluation of membrane filter methods for DNA-DNA hybridization. Antonie van Leeuwenhoek J. Microbiol. Serol. 36:461–474
    [Google Scholar]
  25. De Ley J., Tytgat R., De Smedt J., Michiels M. 1973; Thermal stability of DNA:DNA hybrids within the genus Agrobacterium. J. Gen. Microbiol 78:241252
    [Google Scholar]
  26. Doi R. H., Igarashi R. T. 1965; Conservation of ribosomal and messenger ribonucleic acid cistrons in Bacillus species. J. Bacteriol. 90:384–390
    [Google Scholar]
  27. Dubnau D., Smith I., Morell P., Marmur J. 1965; Gene conservation in Bacillus species. 1. Conserved genetic and nucleic acid base sequence homologies. Proc. Natl. Acad. Sci. U.S.A. 54:491–498
    [Google Scholar]
  28. Gillis M., De Ley J., De Cleene M. 1970; The determination of molecular weight of bacterial genome DNA from renaturation rates. Eur. J. Biochem. 12:143–153
    [Google Scholar]
  29. Graham P. H. 1964; The application of computer techniques to the taxonomy of the root-nodule bacteria of legumes. J. Gen. Microbiol. 35:511–517
    [Google Scholar]
  30. Graham D. C., Quinn E. C. 1974; Identification of Agrobacterium gypsophilae strains NCPPB 179 and NCPPB 1948 as Erwinia herbicola. Int. J. Syst. Bacteriol. 24:238–241
    [Google Scholar]
  31. Gray P. H. H., Thornton H. G. 1928; Soil bacteria that decompose certain aromatic compounds. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 2 73:74–96
    [Google Scholar]
  32. Grienenberger J. M., Simon D. 1972; Etude de la structure et de la dégradation des acides ribonucléiques ribosomaux de quelques bactéries du genre Agrobacterium. C. R. Acad. Sci. Ser. D. 274:13991402
    [Google Scholar]
  33. Grienenberger J. M., Simon D. 1975; Structure and biosynthesis of the ribosomal ribonucleic acids from the oncogenic bacterium Agrobacterium tumefaciens. Biochem. J. 149:23–30
    [Google Scholar]
  34. Hansen H. N., Smith R. E. 1937; A bacterial gall disease of Douglas fir Pseudotsuga taxifolia. Hilgardia 10:569–577
    [Google Scholar]
  35. Heberlein G. T., De Ley J., Tytgat R. 1967; Deoxyribonucleic acid homology and taxonomy of Agrobacterium, Rhizobium and Chromobacterium. J. Bacteriol. 94:116–124
    [Google Scholar]
  36. Hendrie M. S., Holding A. J., Shewan J. M. 1974; Emended description of the genus Alcaligenes and of Alcaligenes faecalis and proposal that the generic name Achromobacter be rejected: the status of the named species of A Icaligenes and Achromobacter. Int. J. Syst. Bacteriol. 24:534–550
    [Google Scholar]
  37. Hill S., Postgate J. R. 1969; Failure of putative nitrogen-fixing bacteria to fix nitrogen. J. Gen. Microbiol. 58:277–285
    [Google Scholar]
  38. Horner H. T., Lersten N. R. 1972; Nomenclature of bacteria in leaf nodules of the families Myrsinaceae and Rubiaceae. Int. J. Syst. Bacteriol. 22:117–122
    [Google Scholar]
  39. Johnson J. L., Anderson R. S., Ordal E. J. 1970; Nucleic acid homologies among oxidase-negative Moraxella species. J. Bacteriol. 101:568–573
    [Google Scholar]
  40. Johnson J. L., Francis B. S. 1975; Taxonomy of the clostridia: ribosomal ribonucleic acid homologies among the species. J. Gen. Microbiol. 88:229–244
    [Google Scholar]
  41. Kersters K., De Ley J. 1975; Identification and grouping of bacteria by numerical analysis of their electrophoretic protein patterns. J. Gen. Microbiol. 87:333–342
    [Google Scholar]
  42. Kersters K., De Ley J., Sneath P. H. A., Sackin M. 1973; Numerical taxonomic analysis of Agrobacterium. J. Gen. Microbiol. 78:227–239
    [Google Scholar]
  43. Kirby K. S. 1957; A new method for the isolation of deoxyribonucleic acids; evidence on the nature of bonds between deoxyribonucleic acid and protein. Biochem. J. 66:495–504
    [Google Scholar]
  44. Kirby K. S., Fox-Carter E., Guest M. 1967; Isolation of deoxyribonucleic acid and ribosomal ribonucleic acid from bacteria. Biochem. J. 104:258–262
    [Google Scholar]
  45. Knösel D. 1962 Untersuchungen an sternbildenden Bakterien. Arbeiten der Landwirtschaftlichen Hochschule Hohenheim 15 Verlag Eugen Ulmer; Stuttgart:
    [Google Scholar]
  46. Knösel D. 1962; Prüfung von Bakterien auf Fähigkeit zur Sternbildung. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 2 116:79–100
    [Google Scholar]
  47. Larsen P. O., Zaitlin M. 1971; Studies on the nucleic acids of avirulent, attenuated, and virulent isolates of Agrobacterium tumefaciens. Phytopathology 61:337–338
    [Google Scholar]
  48. LeGoff L. 1968; Acides ribonucléiques des bactéries du crown-gall Agrobacterium tumefaciens (Smith et Town) Conn, exposées au borate de sodium. Ann. Inst. Pasteur Paris 115:232–248
    [Google Scholar]
  49. Margoliash E., Fitch W. M., Dickerson R. E. 1971 Molecular expression of evolutionary phenomena in the primary and tertiary structures of cytochrome c. 52–95 Schoffeniels E.ed Biochemical evolution and the origin of life North-Holland Publishing Co.; Amsterdam:
    [Google Scholar]
  50. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol. 3:208–218
    [Google Scholar]
  51. Meys W. H., Schilperoort R. A. 1971; Determination of the amount of DNA on nitrocellulose membrane filters. FEBS Lett. 12:166–168
    [Google Scholar]
  52. Midgley J. E. M. 1965; Effects of different extraction procedures on the molecular characteristics of ribosomal ribonucleic acid. Biochim. Biophys. Acta 95:232–243
    [Google Scholar]
  53. Moore R. L., McCarthy B. J. 1967; Comparative study of ribosomal ribonucleic acid cistrons in enterobacteria and myxobacteria. J. Bacteriol 94:10661074
    [Google Scholar]
  54. Moore R. L., McCarthy B. J. 1969; Base sequence homology and renaturation studies of the deoxyribonucleic acid of extremely halophilic bacteria. J. Bacteriol. 99:255–262
    [Google Scholar]
  55. Noll H., Stutz E. 1968; The use of sodium and lithium dodecyl sulfate in ribonucleic acid isolation. Methods Enzymol 12B:129–155
    [Google Scholar]
  56. Pace B., Campbell L. L. 1971; Homology of ribosomal ribonucleic acid of Desulfovibrio species with Desulfovibrio vulgaris. J. Bacteriol. 106:717–719
    [Google Scholar]
  57. Pace B., Campbell L. L. 1971; Homology of ribosomal ribonucleic acid of diverse bacterial species with Escherichia coli and Bacillus stearothermophilus. J. Bacteriol. 107:543–547
    [Google Scholar]
  58. Palleroni N. J., Kunisawa R., Contopoulou R., Doudoroff M. 1973; Nucleic acid homologies in the genus Pseudomonas. Int. J. Syst. Bacteriol. 23:333–339
    [Google Scholar]
  59. Parejko R. A., Wilson P. W. 1968; Taxonomy of Azotomonas species. J. Bacteriol. 95:143–146
    [Google Scholar]
  60. Ruiter A. 1963; Ueber eine braune Verfärbung von mariniertem Hering. Dtsch. Lebensm. Rundsch.April110–111
    [Google Scholar]
  61. Sävulescu T. 1947; Contribution ä la classification des Bacteriacees phytopathogenes. Ann. Acad. Romane Ser. III 22:1–26
    [Google Scholar]
  62. Schuch W., Loening U. E. 1975; The ribosomal ribonucleic acid of Agrobacterium tumefaciens. Biochem. J. 149:17–22
    [Google Scholar]
  63. Skyring G. W., Quadling C. 1969; Soil bacteria: principal component analysis of descriptions of named cultures. Can. J. Microbiol. 15:141–158
    [Google Scholar]
  64. Skyring G. W., Quadling C., Rouatt J. W. 1971; Soil bacteria: principal component analysis of physiological descriptions of some named cultures of Agro bacterium, Arthrobacter, and Rhizobium. Can. J. Microbiol. 17:1299–1311
    [Google Scholar]
  65. Sokal R., Sneath P. H. A. 1963 Principles of numerical taxonomy. Freeman and Co.; San Francisco:
    [Google Scholar]
  66. Stapp C. 1940; Azotomonas insólita, ein neuer aerober stickstoffbindender Mikro-organismus. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 2 102:1–19
    [Google Scholar]
  67. Starr M. P., Weiss J. E. 1943; Growth of phytopathogenic bacteria in a synthetic asparagin medium. Phytopathology 33:314–318
    [Google Scholar]
  68. Sundman V. 1964; A description of some lignanolytic soil bacteria and their ability to oxidize simple phenolic compounds. J. Gen. Microbiol. 36:171–183
    [Google Scholar]
  69. Sundman V. 1965; A study of lignanolytic soil bacteria with special reference to a-conidendrin decomposition. Acta Polytech. Scand., Chemistry Incl. Metall. Ser 40:116
    [Google Scholar]
  70. Taboada J., Ulloa M., Herrera T. 1973; Fijación de nitrógeno in vitro por Agrobacterium azotophilum en diversos substratos, principalmente tierra y derivados de la industria azucarera. Rev. Latinoam. Microbiol. 15:143–146
    [Google Scholar]
  71. Takahashi H., Saito H., Ikeda Y. 1967; Species specificity of the ribosomal RNA cistrons in bacteria. Biochim. Biophys. Acta 134:124–133
    [Google Scholar]
  72. Thornley M. J. 1967; A taxonomic study of Acinetobacter and related genera. J. Gen. Microbiol. 49:211–257
    [Google Scholar]
  73. Ulloa M., Herrera T. 1972; Descripción de dos especies nuevas de bacterias aisladas del pozol: Agrobacterium azotophilum y Achromobacter pozolis. Rev. Latinoam. Microbiol. 14:15–24
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-27-3-222
Loading
/content/journal/ijsem/10.1099/00207713-27-3-222
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error