1887

Abstract

It is proposed to confer species rank to the genetically distinct streptococci that have been considered subspecies of Clarke: subsp. Coykendall, subsp. Coykendall, and subsp. Coykendall. is defined to exclude phenotypically similar bacteria that have deoxyribonucleic acid (DNA) guanine plus cytosine contents appreciably different from 36 to 38 mol% and/or that do not demonstrate DNA base-sequence homology with the type strain. Streptococci that resemble but that are quite disparate in molecular constitution are here regarded as comprising four new species: (Coykendall) comb. nov., (Coykendall) comb. nov., (Coykendall) comb. nov., and sp. nov. NCTC 10449 is here designated as the neotype strain of . The type strains of , and are FA1 (= ATCC 19645), HS6 (= ATCC 19642), SL1, and 8S1, respectively. Simple biochemical tests serve to identify most strains of all five species. Serological procedures are capable of differentiating most human isolates.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-27-1-26
1977-01-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/27/1/ijs-27-1-26.html?itemId=/content/journal/ijsem/10.1099/00207713-27-1-26&mimeType=html&fmt=ahah

References

  1. Bleiweis A. S., Craig R. A., Coleman S. E., van de Rijn I. 1971; The streptococcal cell wall: structure, antigenic composition, and reactivity with lysozyme. J. Dent. Res. 50:1118–1129
    [Google Scholar]
  2. Bratthall D. 1970; Demonstration of five serological groups of streptococcal strains resembling Streptococcus mutans. Odontol. Revy 21:181–196
    [Google Scholar]
  3. Bratthall D. 1972; Demonstration of Streptococcus mu- tans strains in some selected areas of the world. Odontol. Revy 23:401–410
    [Google Scholar]
  4. Brown A. T., Patterson C. E. 1972; Heterogeneity of Streptococcus mutans strains based on their manni-tol-1-phosphate dehydrogenases: criterion for rapid classification. Infect. Immun. 6:422–424
    [Google Scholar]
  5. Brown A. T., Wittenberger C. L. 1972; Fructose- 1,6-diphosphate-dependent lactate dehydrogenase from a cariogenic streptococcus: purification and regulatory properties. J. Bacteriol. 110:604–615
    [Google Scholar]
  6. Carlsson J. 1968; A numerical taxonomie study of human oral streptococci. Odontol. Revy 19:137–160
    [Google Scholar]
  7. Ciardi J. E., Hageage G. J., Wittenberger C. L. 1976; Multicomponent nature of the glucosyltransferase system of Streptococcus mutans. J. Dent. Res 55:C87–C96
    [Google Scholar]
  8. Clarke J. K. 1924; On the bacterial factor in the aetiology of dental caries. Br. J. Exp. Pathol. 5:141–147
    [Google Scholar]
  9. Coykendall A. L. 1970; Base composition of deoxyribonucleic acid isolated from cariogenic streptococci. Arch. Oral Biol. 15:365–368
    [Google Scholar]
  10. Coykendall A. L. 1971; Genetic heterogeneity in Strep-tococcus mutans. J. Bacteriol. 106:192–196
    [Google Scholar]
  11. Coykendall A. L. 1974; Four types of Streptococcus mutans based on their genetic, antigenic, and biochemical characteristics. J. Gen. Microbiol. 83:327–338
    [Google Scholar]
  12. Coykendall A. L., Bratthall D., O’Connor K., Dvarskas R. A. 1976; Serological and genetic examination of some nontypical Streptococcus mutans strains. Infect. Immun. 14:667–670
    [Google Scholar]
  13. Coykendall A. L., Daily O. P., Kramer M. J., Beath M. E. 1971; DNA-DNA hybridization studies of Streptococcus mutans. J. Dent. Res. 50:1131–1139
    [Google Scholar]
  14. Coykendall A. L., Specht P. A., Samol H. H. 1974; Streptococcus mutans in a wild, sucrose-eating rat population. Infect. Immun. 10:216–219
    [Google Scholar]
  15. Dunny G. M., Hausner T., Clewell D. B. 1972; Buoyant densities of DNA from various strains of Streptococcus mutans. Arch. Oral Biol. 13:1001–1003
    [Google Scholar]
  16. Edwardsson S. 1968; Characteristics of caries-inducing human streptococci resembling Streptococcus mutans. Arch. Oral Biol. 13:637–646
    [Google Scholar]
  17. Facklam R. R. 1974; Characteristics of Streptococcus mutans isolated from human dental plaque and blood. Int. J. Syst. Bacteriol. 24:313–319
    [Google Scholar]
  18. Fitzgerald R. J., Jordan H. V. 1968 Polysaccharide-producing bacteria and caries. 79–86 Harris R. S.ed Art and science of dental caries research Academic Press Inc.; New York:
    [Google Scholar]
  19. Fitzgerald R. J., Jordan H. V., Stanley H. R. 1960; Experimental caries and gingival pathologic changes in the gnotobiotic rat. J. Dent. Res. 39:923–935
    [Google Scholar]
  20. Fitzgerald R. J., Keyes P. H. 1960; Demonstration of the etiologic role of streptococci in experimental caries in the hamster. J. Am. Dent. Assoc. 61:9–19
    [Google Scholar]
  21. Freedman M. L., Coykendall A. L. 1975; Variation in the internal polysaccharide synthesis among Streptococcus mutans strains. Infect. Immun. 12:475–479
    [Google Scholar]
  22. Guggenheim B., König K. G., Regolati B. 1969; Modifications of the oral bacterial flora and their influence on dental caries in the rat. III. The cariogenicity of an erythromycin-resistant strain of Streptococcus mutans compared to its non-resistant parent strain. Helv. Odontol. Acta 13:13–22
    [Google Scholar]
  23. Guggenheim B., Schroeder H. E. 1967; Biochemical and morphological aspects of extracellular polysaccharides produced by cariogenic streptococci. Helv. Odontol. Acta 11:131–152
    [Google Scholar]
  24. Hardie J. M., Bowden G. H. 1974; Cell wall and serological studies on Streptococcus mutans. Caries Res. 8:301–316
    [Google Scholar]
  25. Johnson M. C, Bozzola J. J., Shechmeister I. L. 1974; Morphological study of Streptococcus mutans and two extracellular polysaccharide mutants. J. Bacteriol. 118:304–311
    [Google Scholar]
  26. London J., Chace N. M., Kline K. 1975; Aldolase of lactic acid bacteria: immunological relationships among aldolases of streptococci and gram-positive nonsporeforming anaerobes. Int. J. Syst. Bacteriol. 25:114–123
    [Google Scholar]
  27. Marmur J., Falkow S., Mandel M. 1963; New approaches to bacterial taxonomy. Annu. Rev. Microbiol. 17:329–372
    [Google Scholar]
  28. Nalbandian J., Freedman M. L., Tänzer J. M., Lovelace S. M. 1974; Ultrastructure of mutants of Streptococcus mutans with reference to agglutination, adhesion, and extracellular polysaccharide. Infect. Immun. 10:1170–1179
    [Google Scholar]
  29. Osborne R. M., Lamberts B. L., Meyer T. S., Roush A. H. 1976; Acrylamide gel electrophoretic studies of extracellular sucrose-metabolizing enzymes of Streptococcus mutans. J. Dent. Res. 55:77–84
    [Google Scholar]
  30. Perch B., Kjems E., Ravn T. 1974; Biochemical and serological properties of Streptococcus mutans from various human and animal sources. Acta Pathol. Microbiol. Scand. Sect. B 82:357–370
    [Google Scholar]
  31. Ravin A. W. 1963; Experimental approaches to the study of bacterial phylogeny. Am. Natur. 97:307–318
    [Google Scholar]
  32. Schildkraut C. L., Marmur J., Doty P. 1961; The formation of hybrid DNA molecules and their use in studies of DNA homologies. J. Mol. Biol. 3:595–617
    [Google Scholar]
  33. Shklair I. L., Keene H. J. 1974; A biochemical scheme for the separation of the five varieties of Streptococcus mutans. Arch. Oral Biol. 19:1079–1081
    [Google Scholar]
  34. Stanier R. Y. 1971 Towards an evolutionary taxonomy of the bacteria. 598–604 Perez-Miravete A., Pelaez D.ed Recent advances in microbiology Asociacion Mexicana de Microbiologia; Mexico City:
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-27-1-26
Loading
/content/journal/ijsem/10.1099/00207713-27-1-26
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error