1887

Abstract

The taxonomic positions of several recently described species, , and , were investigated by numerical analysis. A set of 141 strains, for which a total of 240 characters was recorded, was analyzed and also compared with representatives of a set of 384 strains of bacteria, examined in an earlier study, representing genera within the family Three clusters of spp. were observed, spp., and , with strains received as and clustering with the spp. was concluded to be synonymous with , from the results of this study, was included in the species Hydrogen sulfide-positive strains of were not judged to warrant separate species status. , and were found to be highly related (similarity values > 90%). It is proposed that these species be merged into a single species, .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-26-2-158
1976-04-01
2022-05-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/26/2/ijs-26-2-158.html?itemId=/content/journal/ijsem/10.1099/00207713-26-2-158&mimeType=html&fmt=ahah

References

  1. d’Alessandro G., Comes R. 1956; Sul meccanismo della reazione dell aciclo /3-fenil-propionico negli enterobatteri. Boll. 1st. Sieroter. Milan 35:202–213
    [Google Scholar]
  2. Baird-Parker A. C. 1963; A classification of micrococci and staphylococci based on physiological and biochemical tests. J. Gen. Microbiol 30:409–427
    [Google Scholar]
  3. Bascomb S., Lapage S. P., Willcox W. R., Curtis M. A. 1971; Numerical classification of the tribe Klebsiellae. J. Gen Microbiol 66:279–295
    [Google Scholar]
  4. Benton A. G. 1935; Chitinovorous bacteria. A preliminary survey. J. Bacteriol 29:449–465
    [Google Scholar]
  5. Brenner D. J., Fanning G. R., Steigerwalt A. G. 1974; Deoxyribonucleic acid relatedness among erwiniae and other Enterobacteriaceae: the gall, wilt, and dry-necrosis organisms (genus Erwinia Winslow et al., sensu stricto). Int. J. Syst. Bacteriol 24:197–204
    [Google Scholar]
  6. Brenner D. J., Steigerwalt A. G., Fanning G. R. 1972; Differentiation of Enterobacter aerogenes from klebsiellae by deoxyribonucleic acid reassociation. Int. J. Syst. Bacteriol 22:193–200
    [Google Scholar]
  7. Brenner D. J., Steigerwalt A. G., Miklos G. V., Fanning G. R. 1973; Deoxyribonucleic acid relatedness among erwiniae and other Enterobacteriaceae. I. The soft-rot organisms (genus Pectobacterium Waldee). Int. J. Syst. Bacteriol 23:205–216
    [Google Scholar]
  8. Burkey L. A. 1928; The fermentation of cornstalks and their constituents. I. Studies on the pectin-fermenting bacteria. Iowa State Coll. J. Sci 3:57–100
    [Google Scholar]
  9. Christensen W. B. 1949; Hydrogen sulphide production and citrate utilization in the differentiation of the enteric pathogens and the coliform bacteria. Res. Bull. Weld County Health Dept 13
    [Google Scholar]
  10. Colwell R. R., Johnson R., Wan L., Lovelace T. E., Brenner D. J. 1974; Numerical taxonomy and deoxyribonucleic acid reassociation in the taxonomy of some gram-negative fermentative bacteria. Int. J. Syst. Bacteriol 24:422–433
    [Google Scholar]
  11. Colwell R. R., Wiebe W. J. 1970; “Core” characteristics for use in classifying aerobic, heterotrophic bacteria by numerical taxonomy. Bull. Ga. Acad. Sci 18:165–185
    [Google Scholar]
  12. Cowan S. T., Steel K. J., Shaw C., Duguid J. P. 1960; A classification of the Klebsiella group. J. Gen. Microbiol 23:601–612
    [Google Scholar]
  13. Crosa J. H., Steigerwalt A. G., Fanning G. R., Brenner D. J. 1974; Polynucleotide sequence divergence in the genus Citrobacter. J. Gen. Microbiol 83271282
    [Google Scholar]
  14. Darland G., Davis B. R. 1973 Biochemical and serological characterization of hydrogen sulfide positive variants of Escherichia coli Center for Disease Control; Atlanta, Ga:
    [Google Scholar]
  15. Davis B. R., Ewing W. H. 1966 The biochemical reactions of Citrobacter freundii.; Center for Disease Control; Atlanta, Ga:
  16. Dye D. 1968; A taxonomic study of the genus Erwinia. I. The “Amylovora” group. N. Z. J. Sci 11:590–607
    [Google Scholar]
  17. Dye D. 1969; A taxonomic study of the genus Erwinia. II. The “Carotovora” group. N. Z. J. Sci 12:81–97
    [Google Scholar]
  18. Dye D. 1969; A taxonomic study of the genus Erwinia. III. The “Herbicola” group. N. Z. J. Sci 12:223–236
    [Google Scholar]
  19. Dye D. 1969; A taxonomic study of the genus Erwinia. IV. ”Atypical” erwiniae. N. Z. J. Sci 12:833–838
    [Google Scholar]
  20. Edwards P. R., Ewing W. H. 1972 Identification of Enterobacteriaceae1–362 Burgess Publishing Co.; Minneapolis:
    [Google Scholar]
  21. Ewing W. H. 1971 Biochemical characterization of Citrobacter freundii and Citrobacter diversus Center for Disease Control; Atlanta, Ga:
    [Google Scholar]
  22. Ewing W. H., Davis B. R. 1972; Biochemical characterization of Citrobacter diversus (Burkey) Werkman and Gillen and designation of the neotype strain. Int. J. Syst. Bacteriol 22:12–18
    [Google Scholar]
  23. Ewing W. H., Davis B. R., Reavis R. W. 1957; Phenylalanine and malonate media and their use in enteric bacteriology. Publ. Health Lab 15:153–167
    [Google Scholar]
  24. Ewing W. H., Fife M. A. 1972; Enterobacter agglomerans (Beijerinck) comb. nov. (the Herbicola-Lathyri bacteria). Int. J. Syst. Bacteriol 22:4–11
    [Google Scholar]
  25. Ewing W. H., Fife M. A. 1972 Enterobacter agglomerans. The herbicola-lathyri bacteria Center for Disease Control; Atlanta, Ga:
    [Google Scholar]
  26. Ewing W. H., Fife M. A. 1972 Biochemical characterization of Enterobacter agglomerans Center for Disease Control; Atlanta, Ga:
    [Google Scholar]
  27. Fred E. B., Baldwin I. L., McCoy E. 1932; Root nodule bacteria and leguminous plants. Univ. Wis. Stud. Sci 5:1–343
    [Google Scholar]
  28. Frederiksen W. 1970; Citrobacter koseri (n.sp.), a new species within the genus Citrobacter with a comment on the taxonomic position of Citrobacter intermedium (Werkmann and Gillen). Publ. Fac. Sci. Univ. J. E. Purkyne Brno 47:89–94
    [Google Scholar]
  29. Gaby W. L., Free E. 1958; Differential diagnosis of Pseudomonas-like microorganisms in the clinical laboratory. J. Bacteriol 76:442–444
    [Google Scholar]
  30. Gardner J. M., Kado C. I. 1972; Comparative base sequence homologies of the deoxyribonucleic acids of Erwinia species and other Enterobacteriaceae. Int. J. Syst. Bacteriol 22:201–209
    [Google Scholar]
  31. Gordon R. E., Mihm J. M. 1957; A comparative study of some strains received as nocardiae. J. Bacteriol 73:15–27
    [Google Scholar]
  32. Gordon R. E., Smith M. M. 1955; Rapidly growing, acid fast bacteria. II. Species description of Mycobacterium fortuitum. Cruz. J. Bacteriol 69:502–507
    [Google Scholar]
  33. Gross R. J., Rowe B. 1974; The serology of Citrobacter koseri, Levinea malonatica and Levinea amalonatica. J. Med. Microbiol 7:155–161
    [Google Scholar]
  34. Haynes W. C. 1951; Pseudomonas aeruginosa—its characterization and identification. J. Gen. Microbiol 5:939–950
    [Google Scholar]
  35. Hinshaw W. R. 1941; Cysteine and related compounds for differentiating members of the genus Salmonella. Hilgardia 13:583–621
    [Google Scholar]
  36. Hugo W. B., Beveridge E. G. 1962; A quantitative and qualitative study of the lipolytic activity of single strains of seven bacterial species. J. Appl. Bacteriol 25:72–82
    [Google Scholar]
  37. Jain K., Radsak K., Mannheim W. 1974; Differentiation of the Oxytocum group from Klebsiella by deoxyribonucleic acid-deoxyribonucleic acid hybridization. Int. J. Syst. Bacteriol 24:402–407
    [Google Scholar]
  38. Johnson R., Colwell R. R., Sakazaki R., Tamura K. 1975; Numerical taxonomy study of the Enterobacteriaceae. Int. J. Syst. Bacteriol 25:12–37
    [Google Scholar]
  39. Kaluzewski S. 1967; Taxonomic position of indole-positive strains of Klebsiella. Exp. Med. Microbiol 19:350–359
    [Google Scholar]
  40. Kauffmann F., Petersen A. 1956; The biochemical group and type differentiation of Enterobacteriaceae by organic acids. Acta Pathol. Microbiol. Scand 38:481–491
    [Google Scholar]
  41. King E. O., Ward M. K., Raney D. E. 1954; Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab. Clin. Med 44:301–307
    [Google Scholar]
  42. Kohn J. 1955; A preliminary report of a new gelatin liquefaction method. J. Clin. Pathol 6249
    [Google Scholar]
  43. Koser S. A. 1923; Utilization of the salts of organic acids by the colon-aerogenes group. J. Bacteriol 8:493–520
    [Google Scholar]
  44. Kovacs N. 1956; Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature (London) 178703
    [Google Scholar]
  45. Lautrop H. 1956; Gelatin liquefying Klebsiella strains (Bacterium oxytocum (Flügge)). Acta Pathol. Microbiol. Scand 39:375–384
    [Google Scholar]
  46. Lautrop H., Orskov I., Gaarslev K. 1971; Hydrogen sulphide producing variants of Escherichia coli. Acta Pathol. Microbiol. Scand. Sect. B 79:641–650
    [Google Scholar]
  47. Lelliot R. A. 1974 The genus Erwinia,. 1–1246 In Buchanan R. E., Gibbons N. E. Bergey’s manual of determinative bacteriology, 8th. Williams and Wilkins Co.; Baltimore:
    [Google Scholar]
  48. Le Minor L., Ben Hamida F. 1962; Avantages de la recherche de la β-galactosidase sur celle de la fermentation du lactose en milieu complexe dans le diagnostic bactériologique en particulier des Entero-bacteriaceae. Ann. Inst. Pasteur Paris 102:267–277
    [Google Scholar]
  49. Macfarlane R. G., Oakley C. L., Anderson C. G. 1941; Haemolysis and the production of opalescence in serum and lecithovitellin by the α-toxin of Clostridium welchii. J. Pathol. Bacteriol 52:99–103
    [Google Scholar]
  50. Macierewicz M. 1966; A proposal of a new group (genus) of Enterobacteriaceae. Med. Dosw. I. Mikrobiol 18:333–339
    [Google Scholar]
  51. Matsumoto H. 1973; Genetic recombination between Klebsiella pneumoniae and Enterobacter aerogenes. Genet. Res! 21:47–55
    [Google Scholar]
  52. Niven C. F., Smiley K. L., Sherman J. M. 1942; The hydrolysis of arginine by streptococci. J. Bacteriol 43:651–660
    [Google Scholar]
  53. Ørskov I. 1957; Biochemical types in the Klebsiella group. Acta Pathol. Microbiol. Scand 40:155–162
    [Google Scholar]
  54. Ørskov I., Orskov F. 1973; Plasmid-determined H2S character in Escherichia coli and its relation to plasmid-carried raffinose fermentation and tetracycline resistance characters. J. Gen. Microbiol 77487499
    [Google Scholar]
  55. Richard C, Brisou B., Lioult J. 1972; Étude taxonomique de “Levinea” nouveau genre de la famille des Entérobactéries. Ann. Inst. Pasteur Paris 122:1137–1146
    [Google Scholar]
  56. Rustigan R., Stuart C. A. 1941; Decomposition of urea by Proteus. Proc. Soc. Exp. Biol. Med 47:108–112
    [Google Scholar]
  57. Sedläk J. 1973; Present knowledge and aspects of Citrobacter. Curr. Top. Microbiol. Immunol 62:41–59
    [Google Scholar]
  58. Sedlák J. 1974 The genus Citrobacter,. 1–1246 In Buchanan R. E., Gibbons N. E. Bergey’s manual of determinative bacteriology, 8th. Williams and Wilkins Co.; Baltimore:
    [Google Scholar]
  59. Sierra G. 1957; A simple method for the detection of lipolytic activity of microorganisms and some observations on the influence of the contact between cells and fatty substrates. Antonie van Leeuwenhoek J. Microbiol. Serol 23:15–22
    [Google Scholar]
  60. Simmons J. S. 1926; A culture medium for differentiating organisms of the typhoid-colon aerogenes groups and for isolation of certain fungi. J. Infect. Dis 39:209–214
    [Google Scholar]
  61. Singer J., Volcani B. E. 1955; An improved ferric chloride test for differentiating Proteus-Providence group from other Enterobacteriaceae. J. Bacteriol 69:303–306
    [Google Scholar]
  62. Sneath P. H. A., Sokal R. R. 1973 Numerical taxonomy: the principles and practice of numerical classification1–573 W. H. Freeman; San Francisco:
    [Google Scholar]
  63. Starr M. P. 1947; Causal agent of bacterial root and stem disease of guayule. Phytopathology 37291
    [Google Scholar]
  64. Tittsler R. P., Sandholzer L. A. 1935; Studies on the Escherichia-Aerobacter intermediates. J. Bacteriol 29:349–361
    [Google Scholar]
  65. Vaughn R. H., Levine M. 1942; Differentiation of the “intermediate” coli-like bacteria. J. Bacteriol 44:487–505
    [Google Scholar]
  66. Waldee E. L. 1945; Comparative studies of some peritrichous phytopathogenic bacteria. Iowa State Coll. J. Sci 19:435–484
    [Google Scholar]
  67. Werkman C. H., Gillen G. F. 1932; Bacteria producing trimethylene glycol. J. Bacteriol 23:167–182
    [Google Scholar]
  68. Young V. M., Kenton D. M., Hobbs B. J., Moody M. R. 1971; Levinea, a new genus of the family Enterobacteriaceae. Int. J. Syst. Bacteriol 21:58–63
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-26-2-158
Loading
/content/journal/ijsem/10.1099/00207713-26-2-158
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error