1887

Abstract

A new genus of methanogenic bacteria is described. The colonies produced by these bacteria are yellow, circular, and convex with lobate margins; an optical pattern of regular, light and dark striations throughout the colonies is a most unique and distinguishing characteristic. These striations are two cell lengths apart. Cells are gram negative and occur in filaments up to 100 in length. Tufts of polar flagella and a striated cell surface are revealed in electron micrographs; cell ends are blunt, not rounded. The deoxyribonucleic acid base composition of the type species is 45 mol% guanine plus cytosine. Formate or hydrogen and carbon dioxide serves as a substrate for methane formation and growth; acetate, pyruvate, methanol, ethanol, and benzoate do not. The name is proposed for this new genus of spiral-shaped methanogenic bacteria. The type species, sp. nov., is named in honor of R. E. Hungate. The type strain of is JF1 (ATCC 27890).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-24-4-465
1974-10-01
2024-04-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/24/4/ijs-24-4-465.html?itemId=/content/journal/ijsem/10.1099/00207713-24-4-465&mimeType=html&fmt=ahah

References

  1. Barker H. A. 1956 Bacterial fermentations. p. 14–15 John Wiley and Sons; New York:
    [Google Scholar]
  2. Bladen H. A., Nylen M. V., Fitzgerald R. J. 1964; Internai structures of a Eubacterium sp. demonstrated by the négative staining technique. J. Bacteriol. 88:763–770
    [Google Scholar]
  3. Bryant M. P., Robinson I. M. 1961; An improved nonselective culture medium for ruminai bacteria and its use in determining diurnal variation in number of bacteria in the rumen. J. Dairy Sci. 44:1446–1456
    [Google Scholar]
  4. Hungate R. E. 1950; The anaérobie mesophilic cellulolytic bacteria. Bacteriol. Rev. 14:1–49
    [Google Scholar]
  5. Langenberg K. F., Bryant M. P., Wolfe R. S. 1968; Hydrogen-oxidizing methane bacteria. II. Electron microscopy. J. Bacteriol. 95:1124–1129
    [Google Scholar]
  6. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3:2317–2324
    [Google Scholar]
  7. Schildkraudt C. L., Marmur J., Doty P. 1962; Détermination of the base composition of deoxyribonucleic acid from its buoyant density in CsQ. J. Mol. Biol. 4:430–443
    [Google Scholar]
  8. Smith P. H. 1966; Microbiology of sludge methanogenesis. Develop. Ind. Microbiol. 7:156–161
    [Google Scholar]
  9. Wolfe R. S. 1972; Microbial formation of methane. Advan. Microbiol. Physiol. 8:107–145
    [Google Scholar]
  10. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J. Biol. Chem. 238:2882–2886
    [Google Scholar]
  11. Zeikus J. G., Wolfe R. S. 1972; Methanobac- terium thermoautotrophicum sp. n., an anaérobie, autotrophic extreme thermophile.. J. Bacteriol. 109:707–713
    [Google Scholar]
  12. Zwillenberg L. O. 1964; Electron microscopie features of gram-negative and gram-positive bacteria embedded in phosphotungstate. Antonie van Leeuwenhoek J. Microbiol. Serol. 30:154–162
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-24-4-465
Loading
/content/journal/ijsem/10.1099/00207713-24-4-465
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error