1887

Abstract

One hundred and five strains of gram-negative, fermentative bacteria, representing members of the together with strains of and , were subjected to numerical taxonomy and deoxyribonucleic acid (DNA)/DNA reassociation studies. The numerical taxonomy sorted the strains into major clusters corresponding to , the tribe , and Smaller clusters could be identified as , and species. Seven reference strains were used in the DNA/DNA reassociation studies. at 60 C shared reassociation values of 80 to 100% with other strains of , 37 to 64% with spp., and lower values with , and Phenetically, K. pneumoniae and shared high relatedness, although they are only 41 to 64% related in the reassociation studies., and showed little relatedness to any of the other strains included in this study. Both reference strains of shared genetic resemblances greater than 65% at 60 C with and at least 70% with other strains of Overall, the agreement between numerical taxonomy and the DNA/DNA reassociation studies was satisfactory, with correlation coefficients ranging from 0.5 to 0.9. The choice of reference strains may well affect the correlation between the two techniques, and it is suggested that hypothetical median organisms be determined from the phenetic groupings and that actual strains that approximate to the hypothetical median organisms be used as reference strains for DNA reassociation.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-24-4-422
1974-10-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/24/4/ijs-24-4-422.html?itemId=/content/journal/ijsem/10.1099/00207713-24-4-422&mimeType=html&fmt=ahah

References

  1. Baumann P., Doudoroff, M., Stanier. R. Y. 1968; A study of the Moraxella group. II.Oxidative-negative species (genus Acinetobacter).. J. Bacteriol. 95:1520–1541
    [Google Scholar]
  2. Breed R. S., Murray E. G. D., Smith (ed.). N. R. 1957 Bergey's manual of determinative bacteriology. , 7th ed. Williams & Wilkins; Baltimore:
    [Google Scholar]
  3. Brenner D. J. 1973; Deoxyribonucleic acid reassociation in the taxonomy of enteric bacteria.. Int. J. Syst. Bacteriol. 23:298–307
    [Google Scholar]
  4. Brenner D. J., Fanning G. R., Johnson K. E., Citarella R. V., Falkow. S. 1969; Polynucleotide sequence relationships among members of Enterobacteriaceae.. J. Bacteriol. 98:637–650
    [Google Scholar]
  5. Brenner D. J., Fanning G. R., Miklos G. V., Steigerwalt A. G. 1973; Polynucleotide sequence relatedness among Shigella species.. Int. J. Syst. Bacteriol. 23:1–7
    [Google Scholar]
  6. Brenner D. J., Fanning G. R., Rake A. V., Johnson K. E. 1969; A batch procedure for thermal elution of DNA from hydroxyapatite.. Anal. Biochem. 28:447–459
    [Google Scholar]
  7. Brenner D. J., Fanning G. R., Skerman F. J., Falkow S. 1972; Polynucleotide sequence divergence among strains of Escherichia coli and closely related organisms.. J. Bacteriol. 109:953–965
    [Google Scholar]
  8. Brenner D. J., Steigerwalt A. G., Fanning G. R. 1972; Differentiation of Enterobacter aerogenes from Klebsiellae by deoxyribonucleic acid reassociation.. Int. J. Syst. Bacteriol. 22:193–200
    [Google Scholar]
  9. Colwell R. R. 1970; Polyphasic taxonomy of bacteria,. p 421–436 In Iizuka H., Hasegawa T. Proceedings of the International Conference on Culture Collections, 1968. University of Tokyo Press; Tokyo:
    [Google Scholar]
  10. Colwell R. R. 1970; Polyphasic taxonomy of the genus Vibrio', numerical taxonomy of Vibrio cholerae, Vibrio parahaemolyticus, and related Vibrio species.. J. Bacteriol. 104:410–433
    [Google Scholar]
  11. Colwell R. R„, Wiebe W. J. 1970; "Core" characteristics for use in classifying aerobic, heterotrophic bacteria by numerical taxonomy.. Bull. Georgia Acad. Sci. 28:165–185
    [Google Scholar]
  12. Crosa J. H., Brenner D. J., Ewing W. H., Falkow. S. 1973; Molecular relationships among the Salmonelleae.. J. Bacteriol. 115:307–315
    [Google Scholar]
  13. Deley J. 1968; Molecular biology and bacterial phylogeny. p. 103–156 In Dobzhansky T., Hecht M. K., Steare W. C. (ed.) Evolutionary biology vol. 2 North Holland Publishing Co.; Amsterdam:
    [Google Scholar]
  14. DeLey J., Park I. W., Tijtgat R., Van Ermengem J. 1966; DNA homology and taxonomy of Pseudomonas and Xanthomonas.. J. Gen. Microbiol. 42:43–56
    [Google Scholar]
  15. Edwards P. R., Ewing. W. H. 1972 Identification of Enterobacteriaceae,. 3rd ed. Burgess Publishing Co.; Minneapolis:
    [Google Scholar]
  16. Ewing W. H., Fife. M. A. 1968; Enterobacter hafniae (the "Hafnia group").. Int. J. Syst. Bacteriol. 18:263–271
    [Google Scholar]
  17. Johnson J. L., Anderson R. S., Ordal E. J. 1970; Nucleic acid homologies among oxidase- negative Moraxella species.. J. Bacteriol. 101:568–573
    [Google Scholar]
  18. Jones D., Sneath P. H. A. 1970; Genetic transfer and bacterial taxonomy.. Bacteriol. Rev. 34:40–81
    [Google Scholar]
  19. Liston J., Wiebe W., Colwell R. R. 1963; Quantitative approach to the study of bacterial species.. J. Bacteriol. 85:1061–1070
    [Google Scholar]
  20. Palleroni N. J., Ballard R. W., Ralston E., Doudoroff M. 1972; Deoxyribonucleic acid homologies among some Pseudomonas species.. J. Bacteriol. 110:1–11
    [Google Scholar]
  21. Sneath P. H. A. 1971; Theoretical aspects of microbiological taxonomy, p.. 581–586 In Perez-Miravete A., Pelaez D. ed Recent advances in microbiology. Tenth International Congress for Microbiology. Associacion Mexicana de Microbiologica; Mexico, D.F:
    [Google Scholar]
  22. Staley T. E., Colwell R. R. 1973; Deoxyribonucleic acid reassociation among members of the genus Vibrio.. Int. J. Syst. Bacteriol. 23:316–332
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-24-4-422
Loading
/content/journal/ijsem/10.1099/00207713-24-4-422
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error