1887

Abstract

Previous studies by us and our colleagues suggested three distinctive deoxyribonucleic acid (DNA) homology groups among the bifidobacteria; these were provisionally named “, “,” and “.” One hundred eighty-four strains isolated from sewage, in addition to many of the strains from the previous study, were investigated and their DNA homology relationships were assessed using 23 reference systems. Strains in the group were found not to differ significantly from those of Reuter in their main physiological characters, such as sugars fermented and temperature, pH, and oxygen relationships; however, their DNA reciprocal homology is only some 50%, their guanine plus cytosine values were 54.7±0.2 and 59.4±0.4 mol %, respectively, and there were some morphological differences between them. The DNA of the group has only about 45% homology with the DNA of and is even less related to other members of the genus. The strains can also be distinguished from other bifidobacteria by means of their sugar fermentations. The DNA of the group has little or no homology with that of any other bifidobacteria; the group also has a distinctive pattern of sugar fermentation and a unique morphology, resembling that of the coryneform bacteria. The three groups are named and described as new species of the genus , and . The type strains of these species are B669 (= ATCC 27539), B764 (= ATCC 27534), and B677 (= ATCC 27535), respectively. DNA-DNA homology relationships are basic to currently proposed species concepts, and data are presented confirming the reliability of critical experimental parameters influencing filter-bound DNA and thus the final relative homology values (e.g., temperature and time of incubation and annealing of DNA in the presence of homologous and heterologous competitive or nonspecific DNA, and the replicability of homology values using different homologous DNA preparations with single DNA competitor and reference DNA).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-24-1-6
1974-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/24/1/ijs-24-1-6.html?itemId=/content/journal/ijsem/10.1099/00207713-24-1-6&mimeType=html&fmt=ahah

References

  1. Beerens H. A., Guillaume J. 1957; Etude de 30 souches de Bifidobacterium bifidum (Lactobacillus bifidus). Caracterisation d’;une variete buccale. Comparaison avec les souches d’origine fecale.. Ann. Inst. Pasteur 9:77–85
    [Google Scholar]
  2. Bonner J. G., Bekhor. I. 1967; A method for the hybridization of nucleic acid molecules at low temperature. Biochemistry 6:3650–3653
    [Google Scholar]
  3. Conn H. J., Jennison M. W. (ed) 1957 Manual of microbiological methods. McGraw Hill; New York:
    [Google Scholar]
  4. Cottyn B. G., Boucque C. V. 1968; Rapid method for the gas-chromatographic determination of volatile fatty acids in rumen fluid. J. Agr. FoodChem 16:105–107
    [Google Scholar]
  5. Crociani F. V., Trovatelli L. D. 1970; Mannitol fermenting bifids from rumen and their DNA homology relationships. Ann. Microbiol 20:99–106
    [Google Scholar]
  6. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem 12:133–142
    [Google Scholar]
  7. De Ley J., Tijtgat R. 1970; Evaluation of membrane filter methods for DNA-DNA hybridization. Antonie van Leeuwenhoek J. Microbiol. Serol 36:461–474
    [Google Scholar]
  8. Denhardt D. T. 1966; A membrane-filter tech-nique for the detection of complementary DNA. Biochem. Biophys. Res. Commun 23:641–646
    [Google Scholar]
  9. de Vries W., Gerbrandy S. J., Stouthamer A.H. 1967; Carbohydrate metabolism in Bifidobacterium bifidum. Biochim. Biophys. Acta 136:415–425
    [Google Scholar]
  10. Dounce A. L., Barnett S. R., Beyer G.T. 1950; Further studies on the kinetics and deter-mination of aldolase. J. Biol. Chem 185:769–780
    [Google Scholar]
  11. Gasser F. 1964; Identification des Lactobacillus fecaux. Ann. Inst. Pasteur 106:778–796
    [Google Scholar]
  12. Johnson J. L., Ordal E.J. 1968; Deoxy-ribonucleic acid homology in bacterial taxonomy: effect of incubation temperature on reaction specificity. J. Bacteriol 95:893–900
    [Google Scholar]
  13. Kirby K. S. 1957; A new method for the isolation of deoxyribonucleic acids: evidence on the nature of bonds between deoxyribonucleic acid and protein. Biochem. J 66:495–504
    [Google Scholar]
  14. Kirby K. S., Fox-Carter E., Guest M. 1967; Isolation of deoxyribonucleic acid and ribosomal ribonucleic acid from bacteria. Biochem. J 104:258–262
    [Google Scholar]
  15. Legault-Démare J., Desseaux B., Heyman T., seror S., Ress G.P. 1967; Studies on hybrid molecules of nucleic acids. I. DNA-DNA hybrids on nitrocellulose filters. Biochem. Biophys. Res. Commun 28:550–557
    [Google Scholar]
  16. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R.>J. 1951; Protein measurement with the Folin phenol reagent. J. Biol. Chem 193:265–275
    [Google Scholar]
  17. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol 3:208–218
    [Google Scholar]
  18. Marmur J., Doty P. 1961; Thermal renaturation of deoxyribonucleic acids. J. Mol. Biol 3:585–594
    [Google Scholar]
  19. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol 5:109–118
    [Google Scholar]
  20. Matteuzzi D., Crociani F., Zani G., Trovatelli L.D. 1971; Bifidobacterium suis n.sp.: a new species of the genus Bifidobacterium isolated from pig feces. Z. Allg. Mikrobiol 11:387–395
    [Google Scholar]
  21. McCarthy B. J., Bolton E.T. 1963; An approach to the measurement of genetic relatedness among organisms. Proc. Nat. Acad. Sci. U.S.A. 50:156–164
    [Google Scholar]
  22. Mitsuoka T. 1969; Vergleichende Untersuchungen über die Bifidobakterien aus dem Verdauungstrakt yon Menschen und Tieren. Zentralbl. Bakteriol. Parasitenk. Infektionskr. Hyg. Abt. I Orig 210:52–64
    [Google Scholar]
  23. Okanishi M., Gregory K.F. 1970; Methods for the determination of deoxyribonucleic acid homologies in Streptomyces.. 104:1086–1094
    [Google Scholar]
  24. Oppenheimer C. H., Drost-Hansen W.A. 1960; A relationship between multiple temperature optima for biological systems and the properties of water. J. Bacteriol 80:21–24
    [Google Scholar]
  25. Prevot A. R., Turpin A., Kaiser P. 1967; Les bacteries anaerobies. Dunod, Paris.
    [Google Scholar]
  26. Reuter G. 1963-64; Vergleichende Untersuchungen über die Bifidus-Flora im Sauglings- und Erwachsenenstuhl. Zentralbl. Bakteriol. Parasitenk. Infektionskr. Hyg. Abt. I Orig 191:486–507
    [Google Scholar]
  27. Reuter G. 1971; Designation of type strains for Bifidobacterium species. Int. J. Syst. Bacteriol 21:273–275
    [Google Scholar]
  28. Rogul M., Brendle J. J., Haapala K., Alexander A.D. 1970; Nucleic acid similarities among Pseudomonas pseudomallei, Pseudomonas multivorans and Actinobacillus mallei.. J. Bacteriol 101:827–835
    [Google Scholar]
  29. Scardovi V. B., Zani G. 1971; Starch gel electrophoresis of fructose-6-phosphate phosphoketolase in the genus Bifidobacterium.. J. Bacteriol 106:1036–1039
    [Google Scholar]
  30. Scardovi V., Trovatelli L. D. 1974; Bifidobacterium animalis (Mitsuoka) comb. nov. and the “minimum” and “subtile” groups of new bifidobacteria found in sewage. Int. J. Syst. Bacteriol 24:21–28
    [Google Scholar]
  31. Scardovi V., Trovatelli L. D., Crociani F., Sgorbati B. 1969; Bifidobacteria in bovine rumen. New species of the genus Bifidobacterium: B. globosum n. sp. and B. ruminale n. sp. Arch. Mikrobiol 68:278–294
    [Google Scholar]
  32. Scardovi V., Trovatelli L. D., Zani G., Crociani F., Matteuzzi D. 1971; Deoxyribonucleic acid homology relationships among species of the genus Bifidobacterium. Int. J. Syst. Bacteriol 21:276–294
    [Google Scholar]
  33. Schleifer K. M., Kandler O. 1973; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev 36:407–477
    [Google Scholar]
  34. Schramm M. V., Racker F. 1958; Phosphorolytic cleavage of fructose-6-phosphate by fructose-6-phosphate phosphoketolase from Acetobacter xylinum.. J. Biol. Chem 233:1283–1288
    [Google Scholar]
  35. Sibley J. A., Lehninger A.L. 1949; Determination of aldolase in animal tissues. J. Biol. Chem 177:859–872
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-24-1-6
Loading
/content/journal/ijsem/10.1099/00207713-24-1-6
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error