Comparative Base Sequence Homologies of the Deoxyribonucleic Acids of Species and Other Free

Abstract

Twenty-six strains representing ten species of Erwinia were examined by deoxyribonucleic acid (DNA)-DNA hybridization techniques for relatedness to each other as well as to other members of the family Enterobacteriaceae, including the genera Escherichia, Salmonella, Klebsiella, Shigella, and Proteus. DNA homologies among the different Erwinia specieswere in most cases below 50%, even under nonstringent annealing conditions. In most instances DNA homologies between Erwinia species and Escherichia, Salmonella, Klebsiella, and Shigella species showed about the same amount of relatedness as in Erwinia-to-Erwinia combinations. The molecular hybridization data indicate that the genus Erwinia is a loosely composed group of bacteria that often have no greater affinities to each other than to other enteric bacteria. Furthermore, the data do not support some of the previously proposed taxonomic divisions within the genus Erwinia.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-22-4-201
1972-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/22/4/ijs-22-4-201.html?itemId=/content/journal/ijsem/10.1099/00207713-22-4-201&mimeType=html&fmt=ahah

References

  1. Berns K. L, Thomas C. A. 1965; Isolation of high molecular weight DNA from Hemophilus influenzae. J. Mol. Biol. 11:476–490
    [Google Scholar]
  2. Brenner D. J., Cowie D. B. 1968; Thermal stability of Escherichia coli-Salmonella typhimurium deoxyribonucleic acid duplexes. J. Bacteriol. 95:2258–2262
    [Google Scholar]
  3. Brenner D. J., Fanning G. R., Johnson K. E., Citarella R. V., Falkow S. 1969; Polynucleotide sequence relationships among members of Enterobacteriaceae. J. Bacteriol. 98:637–650
    [Google Scholar]
  4. Brenner D. J., Fanning G. R., Skerman F. J., Falkow S. 1972; Polynucleotide sequence divergence among strains of Escherichia coli and closely related organisms. J. Bacteriol. 109:953–965
    [Google Scholar]
  5. Brenner D. J., Fanning G. R., Steigerwalt A. G. 1972; Deoxyribonucleic acid relatedness among species of Erwinia and between Erwinia species and other enterobacteria. J. Bacteriol. 110:12–17
    [Google Scholar]
  6. Burton K. 1968 Determination of DNA concentration with diphenylamine. 163–166 Colowick S. P., Kaplan N. O.ed Methods in enzymology 12 Academic Press Inc.; New York:
    [Google Scholar]
  7. Chatterjee A. K., Starr M. P. 1972; Genetic transfer of episomic elements among Erwinia species and other enterobacteria: F7AC+. J. Bacteriol. 111:169–176
    [Google Scholar]
  8. Denhardt D. T. 1966; A membrane filter technique for the detection of complementary DNA. Biochem. Biophys. Res. Commun. 23:641–646
    [Google Scholar]
  9. Dye D. W. 1968; A taxonomic study of the genus Erwinia. I. The “amylovora” group. New Zealand J. Sci. 11:590–607
    [Google Scholar]
  10. Dye D. W. 1968; A taxonomic study of the genus Erwinia. II. The “carotovora” group. New Zealand J. Sci. 12:81–97
    [Google Scholar]
  11. Ewing W. H., Fife M. A. 1971; Enterobacter agglomerans. Part 1, The Herbicola-Lathyri bacteria. U.S. Dep. H. Ed. W. Pub. Health Rep. 4B5038871
    [Google Scholar]
  12. Friesen J. D. 1968; Measurement of DNA synthesis in bacterial cells. Methods Enzymol. 128:625–635
    [Google Scholar]
  13. Gillespie D., Speigelman S. 1965; A quantitative assay for DNA-RNA hybrids with DNA immobilized on a membrane. J. Mol. Biol. 12:829–842
    [Google Scholar]
  14. Kado C. I., Heskett M. G., Langley R. A. 1972; Studies on Agrobacterium tumefaciens: characterization of strains ID 135 and B6, and analysis of the bacterial chromosome, transfer RNA and ribosomes for tumor-inducing ability. Physiol. Plant Pathol. 2:47–57
    [Google Scholar]
  15. Kirby K. S., Fox-Carter E., Guest M. 1967; Isolation of deoxyribonucleic acid and ribonucleic acid from bacteria. Biochem. J. 104:258–262
    [Google Scholar]
  16. Laird C. D., McConaughy B. L., McCarthy B. J. 1969; Rate of fixation of nucleotide substitution in evolution. Nature (London) 224:149–154
    [Google Scholar]
  17. Langley R. A., Kado C. I. 1972; Studies on Agrobacterium tumejaciens: conditions for mutagenesis by methyl-N’-nitro-N-nitrosoguanidine and relationships of A. tumefaciens mutants to crown-gall tumor induction. Mutat. Res. 14:277–286
    [Google Scholar]
  18. Mandel M. 1969; New approaches to bacterial taxonomy: perspectives and prospects. Annu. Rev. Microbiol. 23:239–274
    [Google Scholar]
  19. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3:208–218
    [Google Scholar]
  20. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5:109–118
    [Google Scholar]
  21. Martinec T., Kocur M. 1963; A taxonomic study of the genus Erwinia. PubL Fac. Sci. Univ. J. E. Purkynye Bruno 4:1–160
    [Google Scholar]
  22. McConaughy B., Laird C. D., McCarthy B. J. 1969; Nucleic acid reassociation in formamide. Biochemistry 8:3289–3295
    [Google Scholar]
  23. Moustardier G., Brisov J., Saout J., Erhardt J. P. 1961; Les Erwinia discussion taxonomique. Int. Med. Bull. Ass. Dipl. Microbiol. Nancy 82:2–12
    [Google Scholar]
  24. Starr M. P., Mandel M. 1969; DNA base composition and taxonomy of phytopathogenic and other enterobacteria. J. Gen. Microbiol. 56:113–123
    [Google Scholar]
  25. Winslow C. E. A., Broadhurst J., Buchanan R. E., Krumwiede C. Jr., Rogers L. A., Smith G. H. 1917; The families and genera of the bacteria. Preliminary report of the Committee of the Society of American Bacteriologists on Characterization and classification of bacterial types. J. Bacteriol. 2:505–566
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-22-4-201
Loading
/content/journal/ijsem/10.1099/00207713-22-4-201
Loading

Data & Media loading...

Most cited Most Cited RSS feed