1887

Abstract

Polynucleotide sequence relatedness tests were carried out to determine the extent of deoxyribonucleic acid (DNA) divergence among species of Klebsiella and Enterobacter aerogenes strains. Labeled, denatured DNA fragments from K. pneumoniae type 2 and E. aerogenes 1627-66 were each incubated with an excess of unlabeled DNA fragments from Klebsiella species and strains of E. aerogenes. Reassociated DNA duplexes were separated from unreactedDNA on hydroxyapatite. The stability of reassociated DNA duplexes was determined in a series of thermal elutions from hydroxyapatite. Relative reassociation of DNA from 5 Klebsiella strains to K. pneumoniae type 2 was 80 to 91%. In no case did the related DNA duplexes exhibit evidence of greater than 1.2% unpaired bases. Similarly, DNA from 10 strains of E. aerogenes exhibited 83 to 100% relative reassociation with DNA from E. aerogenes 1627-66. In this case, 2.2% was the largest amount of unpaired bases within a reassociated DNA duplex. Conversely, only 56% relative relatedness was observed in 18 reactions between klebsiellae and E. aerogenes. In these reactions, related DNA duplexes exhibited an average of 9% unpaired bases. We conclude that klebsiellae and E. aerogenes each are highly related groups of strains and that these two groups have diverged significantly from one another. An E. cloacae strain exhibited some 40% relative relatedness with some 12% unpaired bases in reactions with K. pneumoniae and E. aerogenes.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-22-4-193
1972-10-01
2024-11-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/22/4/ijs-22-4-193.html?itemId=/content/journal/ijsem/10.1099/00207713-22-4-193&mimeType=html&fmt=ahah

References

  1. Anderson R. S., Ordal E. J. 1972; Deoxyribonucleic acid relationships among marine vibrios. J. Bacteriol. 109:696–706
    [Google Scholar]
  2. Baptist J. N., Shaw C. R., Mandel M. 1969; Zone electrophoresis of enzymes in bacterial taxonomy. J. Bacteriol. 99:180–188
    [Google Scholar]
  3. Barry A. L., Bernsohn K. L., Thrupp L. D. 1969; Rapid identification of Escherichia, Klebsiella and Enterobacter by use of a new urease test. Antimicrob. Ag. Chemother 1968 465470
    [Google Scholar]
  4. Barry A. L., Bernsohn K. L., Thrupp L. D. 1969; Four-hour urease test for distinguishing between Klebsiella and Enterobacter. Appl. Microbiol. 18:156–158
    [Google Scholar]
  5. Bascomb S., Lapage S. P., Willcox W. R., Curtis M. A. 1971; Numerical classification of the tribe Klebsielleae. J. Gen. Microbiol. 66:279–295
    [Google Scholar]
  6. Bautz E. K. F., Bautz F. A. 1964; The influence of noncomplementary bases on the stability of ordered polynucleotides. Proc. Nat. Acad. Sci. U.S.A. 52:1476–1481
    [Google Scholar]
  7. Benner E. J., Micklewait J. S., Brodie J. L., Kirby W. M. M. 1965; Natural and acquired resistance of Klebsiella-Aerobacter to cephalothin and cephaloridine. Proc. Soc. Exp. Biol. Med. 119:536–541
    [Google Scholar]
  8. Bowman J. E., Brubaker R. R., Frischer H., Carson P. E. 1967; Characterization of enterobacteria by starch-gel electrophoresis of glucose-6-phosphate dehydrogenase and phosphogluconate dehydrogenase. J. Bacteriol. 94:544–551
    [Google Scholar]
  9. Brenner D. J., Falkow S. 1971; Molecular relationships among members of the Enterobacteriaceae. Advan. Genet. 16:81–118
    [Google Scholar]
  10. Brenner D. J., Fanning G. R., Johnson K. E., Citarella R. V., Falkow S. 1969; Polynucleotide sequence relationships among members of Entero-bacteriaceae. J. Bacteriol. 98:637–650
    [Google Scholar]
  11. Brenner D. J., Fanning G. R., Rake A., Johnson K. E. 1969; A batch procedure for thermal elution of DNA from hydroxyapatite. Anal. Biochem. 28:447–459
    [Google Scholar]
  12. Brenner D. J., Fanning G. R., Skerman F. J., Falkow S. 1972; Polynucleotide sequence divergence among strains of Escherichia coli and closely related organisms. J. Bacteriol. 109:953–965
    [Google Scholar]
  13. Britten R. J., Kohne D.E. 1966; Nucleotide sequence repetition in DNA. Carnegie Inst. Washington Yearb. 65:78–106
    [Google Scholar]
  14. Edmondson E. B., Sanford J. P. 1967; The Kleb siella-E nterobacter (Aerobacter)Serratia group: a clinical and bacteriological evaluation. Medicine (Baltimore) 46:323–340
    [Google Scholar]
  15. Eichhoff T. C., Steinhauer B. W., Findland M. 1966; The Kleb siella-E nt erobacter-Serratia division: biochemical and serological characteristics and susceptibility to antibiotics. Ann. Intern. Med. 65:1163–1179
    [Google Scholar]
  16. Ewing W. H. 1970 Differentiation of Enterobacteriaceae by biochemical reactions. Center for Disease Control; Atlanta, Ga:
    [Google Scholar]
  17. Fife M. A., Ewing W. H., Davis B. R. 1965 The biochemical reactions of the tribe Klebsielleae. Center for Disease Control; Atlanta, Ga:
    [Google Scholar]
  18. Graber C. D. 1970 The Enterobacteriaceae. 3047 Graber C. D.ed Rapid diagnostic methods in medical microbiology The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  19. Kingsbury D. T., Fanning G. R., Johnson K. E., Brenner D. J. 1969; Thermal stability of interspecies Neisseria DNA duplexes. J. Gen. Microbiol. 55:201–208
    [Google Scholar]
  20. Laired C. D., McConaughy B. L., McCarthy B. J. 1969; On the rate of fixation of nucleotide substitutions in evolution. Nature (London) 224:149–154
    [Google Scholar]
  21. Ramirez M. J. 1968; Differentiation of KlebsiellaEnterobacter (Aerobacter)Serratia by biochemical tests and antibiotic susceptibility. Appl. Microbiol. 16:1548–1550
    [Google Scholar]
/content/journal/ijsem/10.1099/00207713-22-4-193
Loading
/content/journal/ijsem/10.1099/00207713-22-4-193
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error