1887

Abstract

ABSTRACT

Fifty-six strains of “hydrogen bacteria” and related nonautotrophic bacteria, including nearly all existing named spp., have been compared. It is proposed that the genus should be rejected, since its type species H. , appears to be a ; and that the various species of “hydrogen bacteria” should be assigned to other genera, not specifically characterized by the ability to grow autotrophically with H.

The two species of hydrogen bacteria most frequently isolated by enrichment show a peritrichous or degenerate peritrichous flagellar arrangement; one is nonpigmented, the other produces yellow (carotenoid) cellular pigments. Of the various possible generic assignments for these two species, assignment to the genus is proposed. The nonpigmented species, previously named , but never legitimately described, is here described as . The yellow species which includes both facultatively autotrophic and nonautotrophic strains, is described as a new species, . The Gram-negative, coccoid hydrogen bacterium, formerly known as , is placed in a new genus, . The polarly flagellated species of hydrogen bacteria, including the previously named species and Pseudomonassa saccharophila, are all assigned to the genus .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-19-4-375
1969-10-01
2024-10-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/19/4/ijs-19-4-375.html?itemId=/content/journal/ijsem/10.1099/00207713-19-4-375&mimeType=html&fmt=ahah

References

  1. Baird-Parker A. C. 1965; The classification of staphylococci and micrococci from world-wide sources.. J. gen. Microbiol. 38:363–387
    [Google Scholar]
  2. Beijerinck M., Minkman. D. C. J. 1910; Bildung und Verbrauch von Stickoxydul durch Bakterien.. Zentralbl. Bakteriol. Parasitenik. Abt. II. 25:30–63
    [Google Scholar]
  3. Bernaerts M. J., DeLey. J. 1958; 3-Ketoglycosides, new intermediate in the catabolism of disaccharides. Biochem. Biophys. Acta 30:661–662
    [Google Scholar]
  4. Bovell C. R. 1957 Hydrogenase activity of new Hydrogenomonas species. Ph. D. Thesis, Univ. of California, Davis.
  5. Delafield F. P., Doudoroff M., Palleroni N. J., Lusty C. J., Contopoulou C. R. 1965; Decomposition of poly-βhydroxybutyrate by pseudomonads.. J. Bacteriol. 90:1455–1466
    [Google Scholar]
  6. Doudoroff M. 1940; The oxidative assimilation of sugars and related substances by Pseudomonas saccharophila wi with a contribution to the Enzymologie. 9:59–72
    [Google Scholar]
  7. Eberhardt U. 1965; Die Anreicherung von Knallgasbakterien. pp. 155-169 in: H. G. Schlegel (ed.) Anreicherung skultur und Mutantenauslese. Symp. Gottingen, 1964. Gustav Fischer Verlag-Stuttgart. Germany.:
    [Google Scholar]
  8. Goodhue C. T., Snell. E. E. 1966; The bacterial degradation of pantothenic acid. I. Over-all nature of the reaction. Biochemistry. 5:393–398
    [Google Scholar]
  9. Hirsch P. 1961; Wasserstoffaktivierung und Chemoautotrophie bie Actinomyceten. Arch. Mikrobiol.. 39:360–373
    [Google Scholar]
  10. Kaserer H. 1906; Die Oxydation des Wasserstoffes durch Mikroorganismen. Zentralbl. Bakteriol. Parasitenik. Abt. II. 16:681–696
    [Google Scholar]
  11. Kistner A. 1953; On a bacterium oxidizing carbon monoxide. Proc. Koninkl. Nederl. Akad. Wetens, Ser. C. 56:443–450
    [Google Scholar]
  12. Kluyver A. J., Manten. A. 1942; Some observations on the metabolism of bacteria oxidizing molecular hydrogen. Antonie van Leeuwenhoek . J. Microbiol. Serol. 8:71–85
    [Google Scholar]
  13. Nabokich A. J., Lebedeff. A. F. 1907; Uber die oxydation des Wasserstoffes durch Bakterien.. Zentralbl. Bakteriol. Parasitenik. Abt. II. 17:350–355
    [Google Scholar]
  14. Niklewski B. 1910; Uber die Wasserstoffoxydation durch Mikroorganismen.. Jahrb. Wiss. Bot. 48:113–142
    [Google Scholar]
  15. Orla-Jensen S. 1909; Die Hauptlinien des natürlichen Bakteriensy stems.. Zentralbl. Bakteriol. Parasitenik. Abt. II. 22:305–346
    [Google Scholar]
  16. Packer L., Vishniac. W. 1955; Chemosynthetic fixation of carbon dioxide and characteristics of hydrogenases in resting cell suspensions of Hydrogenomonas ruhlandii nov. spec.. J. Bactiol. 70:216–233
    [Google Scholar]
  17. Robinson J., Gibbons. N. E. 1952; The effect of salts on the growth of Micrococcus halodenitrificans, n. sp.. Canad. J. Bot. 30:147–154
    [Google Scholar]
  18. Schatz A., Bovell. C. R. 1952; Growth and hydrogenase activity of a new bacterium Hydrogenomonas facilis.. J. Bacteriol. 63:87–98
    [Google Scholar]
  19. Smith E. F., Townsend. C. O. 1907; A plant tumor of bacterial origin. Science, N. S.. 25:671–673
    [Google Scholar]
  20. Stanier R. Y., Palleroni N. J., Doudoroff. M. 1966; The aerobic pseudomonads: a taxonomic study.. J. gen. Microbiol. 43:159–271
    [Google Scholar]
  21. Verhoeven W., Koster A. L., Van Nievelt. M. C. A. 1954; Studies on true dissimilatory nitrate reduction. III. Micrococcus denitrificans Beijerinck, a bacterium capable of using molecular hydrogen in denitrification. Antonie van Leeuwenhoek. J. Microbiol. Serol. 20:273–284
    [Google Scholar]
  22. Vogt M. 1965; Wachstumsphysiologische Untersuchungen an Micrococcus denitrificans Beijerinck.. Arch. Mikrobiol. 50:256–281
    [Google Scholar]
  23. Wittenberger C. L., Repaske. R. 1958; Studies on the electron transport system in Hydrogenomonas eutropha.. Bacteriol. Proc.106.
    [Google Scholar]
  24. Wittenberger C. L. 1961; Studies on hydrogen oxidation in cell-free extracts of Hydrogenomonas eutropha.. Biochem. Biophys. Acta 47:542–552
    [Google Scholar]
/content/journal/ijsem/10.1099/00207713-19-4-375
Loading
/content/journal/ijsem/10.1099/00207713-19-4-375
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error