1887

Abstract

Arboviruses constitute a major public health problem; in particular mosquito-borne arboviruses that continuously emerge and re-emerge. Arbovirus infection of mammals is enhanced by the presence of a mosquito-bite at the inoculation site, or by the co-inoculation of extracted mosquito saliva alongside virus, in comparison to virus experimentally administered by needle inoculation in the absence of bite/saliva. Inflammatory responses elicited to saliva appear to be key in facilitating this enhancement. As such, we have studied the mechanistic basis for these observations by investigating mosquito-bite factors, as well as host responses, involved in facilitating viral enhancement. We have studied whether saliva from different mosquito species successfully enhance virus infection. Interestingly, while saliva from genus enhanced virus infection, saliva did not. This could partly explain why mosquitos are unsuitable vectors for transmitting most arboviruses. By comparing the effects that saliva from these different species have at the inoculation-site, we have further specified which inflammatory responses modulate arbovirus infection in the skin. Using an mouse-model we demonstrate that causes significantly less oedema than and that histamine induced oedema in the absence of salivary-factors also enhances infection. Also, measuring cytokine responses to Aedes and Anopheles saliva, showed that several key anti-viral chemokines such as CCL5 were significantly more upregulated by Anopheles. Hence, we’re providing important insights into how mosquito saliva modulates infection. A better understanding of this will aid the development of anti-viral treatments targeting factors within the mosquito bite that are common to many distinct infections.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.imav2019.po0003
2019-12-01
2024-04-25
Loading full text...

Full text loading...

http://instance.metastore.ingenta.com/content/journal/acmi/10.1099/acmi.imav2019.po0003
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error