1887

Abstract

The primary recognition event between a fungal pathogen and the immune system normally involves the engagement of a pattern recognition receptor with specific components of the cell wall. However, the cell wall is a complex three dimensional structure whose composition changes rapidly in accordance with environmental stimuli. Therefore it is important to know what is the precise nature of the primary recognition event, how many events occur to activate the immune response and how these recognition events are affected by changes in cell wall architecture, cellular morphogenesis and physiological adaptation of the pathogen to specific niches in the human body. We address this fundamental question using four soluble immune C-Type lectin receptor-probes which recognize specific mannans and β-1,3 glucan in the cell wall. We use these C-type lectin probes to demonstrate that mannan epitopes are differentially distributed in the inner and outer layers of fungal cell wall in a clustered or diffuse manner. Immune reactivity of fungal cell surfaces did not correlate with relatedness of different fungal species, and mannan-detecting receptor-probes discriminated between cell surface mannans generated by the same fungus growing under different conditions. These studies demonstrate that mannan-epitopes within fungal cell walls are differentially distributed and dynamically expressed as the fungus adapted to microenvironments that would be encountered in vivo.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.cc2021.po0129
2021-12-17
2024-04-23
Loading full text...

Full text loading...

http://instance.metastore.ingenta.com/content/journal/acmi/10.1099/acmi.cc2021.po0129
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error