
Beyond fluorescein:
Using fluorescent protein calibrants 
for direct and absolute quantification 
of protein production in synthetic biology

While inter-lab calibration standards are 
approaching mainstream usage in synthetic 
biology (Beal et al., 2018; 2020), such calibrations 
are not in fact sufficient for absolute protein 
quantification required for modelling synthetic 
circuits. Fluorescein-based calibration of plate 
reader and flow cytometry instruments allows 
the measurement of green fluorescent protein 
(GFP) in synthetic cells to graduate from arbitrary 
units to calibrated units, but retains important 
caveats. Fluorescein is only a good calibrant for 
green FPs, leaving other FPs uncalibrated, and 
only provides conversions to units of brightness, 
not to molecule numbers.

Method Validation

Fluorescence Protein Calibration Method

Protein purification need not be as complex 
as many newcomers to the technique think, 
particularly for stable proteins like FPs. This 
protocol uses standard techniques with 
commonly available reagents. A standardised 
expression vector was constructed from an 
arabinose-inducible His-tagged FP construct in 
a high copy SEVA vector. Protein is purified 
using a His-Cobalt matrix. No specialised 
equipment is needed to produce micrograms 
of protein, and all FPs trialled purify with high 
yield and purity. 
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Calibration for quantitative analysis of fluorescence
Ideal assay calibrants in molecular biology consist 
of the same molecule as the one to be measured 
– in this case, a purified preparation of the 
appropriate fluorescent protein. Here we show 
that by using purified FP calibrants, all protein 
species in a synthetic circuit can be quantified in 
absolute terms using no advanced 
instrumentation. We develop a SEVA 
(Standardised European Vector Architecture)-
based expression vector that allows the high-
level production of soluble protein and describe a 
straightforward protocol for the purification of 
micrograms of FP, followed by a calibration that 
relates fluorescence activity to protein mass.

Why count proteins?
Mathematical modelling of synthetic circuits 
relies on our ability to quantitatively 
characterise gene expression. One of the 
biggest limitations is our inability to measure 
circuit components easily, affordably and 
accurately. While omics technologies allow us 
to exhaustively characterise a circuit or cell 
state at one point in time, their use is limited 
by cost and the need for continuous 
monitoring of dynamic processes with minimal 
manual intervention. Fluorescent protein 
monitoring is cheap, reliable and already part 
of most synthetic biologists’ workflows.

Beyond synthetic circuits, characterising 
absolute protein number has broad 
applications. Fluorescent monitoring is easier, 
quicker and higher throughput than Western 
blotting, and working at the wrong order of 
magnitude (100 vs 100,000 molecules/cell) can 
have important implications for 
experimentation and engineering (Ceroni et 
al., 2015).

Evaluation of protocols Circuit Quantification

WET LAB DRY LAB

Data analysis has been assembled into an R package consisting of automatable functions for the 
analysis of each data set. First, FP concentration can be determined from the protein assay data. 
This generates a csv file which can be incorporated into the fluorescence assay data to generate 
conversion factors from fluorescence to molecule number for each condition calibrated. Finally, 
these conversion factors, along with others for cell density, can be used to generate values in 
fluorescence protein molecules per cell from microplate data. The analysis methodology is based 
on the approach of the recent flopR package developed for fluorescein calibrations (Fedorec, 
Robinson et al., 2020).
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Protein observable in elutions

FPs are serially diluted for fluorescence 
measurements for all instruments and filter 
channels required, followed by quantification 
to determine protein concentration. Several 
protein quantification assays exist. Here, we 
use the bicinchoninic acid (BCA) assay for its 
sensitivity, ease of use and low protein-to-
protein variability. Estimates from BCA assays 
are cross-validated using complementary 
techniques such as SDS-PAGE based 
Coomassie staining.
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Discussion
While certainty about protein numbers on a 
single-cell level will ultimately require single-cell 
techniques, and cell-to-cell variation remains an 
important consideration, assumptions about the 
relative uniformity of bacterial cultures are valid 
for many circuits and can be verified by flow 
cytometry. The low cost and high throughput of 
batch techniques means that microplate assays 
remain an important screening platform, 
necessitating the development of methods for 
extracting informative numbers from such data.

We show here that simply by making appropriate 
calibrants, ballpark molecule-per-cell values are 
achievable without specialised instrumentation 
or expense, and that the information gained 
from such efforts can be important for:
(1) easing experimentation by allowing 
comparison of experiments from different 
instruments, (2) giving us the tools to evaluate 
microplate protocols with quantitative 
information, and (3) enabling circuit debugging 
required for the Design Build Test cycle.

Quantification of RedFP circuits in molecules/cell 
can be used to compare between genetic variants, 
experimental conditions and instruments
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Characterisation of mCherry protein level with a SEVA expression vector 
shows protein levels per cell fall in the 103 to 105 range
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Demonstration: Calibrations allow the comparison of three different RFPs 
across instruments despite different relative fluorescence values.
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Calibration allows for a direct comparison of multiple 
protein species in the same circuit

Calibration allows for a re-evaluation of assumptions 
about microplate assay quantification

Absorbance of RFPs at 600nm has been suggested to interfere with bacterial 
density estimation, typically assessed as the optical density (absorbance + 
scatter) of cultures at 600nm (‘OD600’) (Hecht et al., 2016), however, it has 
never been quantified how many molecules of RFPs might be required for this 
effect to occur.

Using purified RFPs, it is possible to show that mCherry absorbance in one 
microplate reader approximates ~0.02 OD600 units for ~10 14 molecules. For a 
typical cell density of 2x108 cells per well (OD~0.45), an intermediate mCherry 
level of 5*103 proteins/cell would be expected to increase apparent OD600 by 
only 0.0002 (0.04%). It would require overexpression to 5*105 proteins/cell to 
increase the OD by a significant amount (0.02, or 4%), which would make 
mCherry the most abundant protein in the cell and ~25% of the proteome 
(M ilo, 2013; http://book.bionumbers.org/).
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Using a circuit consisting two 
fluorescently labelled components, 
calibration allows us to quantify the 
molecular levels of both, showing 
that the Ptac promoter results in 
100s of molecules even in the 
absence of IPTG and suggesting that 
self degradation is one route to 
controlling transcriptional leakage.
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Conversion factors may be calculated by relating fluorescence to molecule number
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