The persistence of infectious organisms on hospital surfaces presents a significant challenge to healthcare environments. Low irradiance visible 405-nm light has recently been developed as a method for environmental decontamination, with studies demonstrating successful reductions of environmental bacteria in wards and operating theatres. This study investigates the antimicrobial efficacy of 405-nm light for decontamination of surfaces, and how the dose-response kinetics are affected by use of differing light irradiances.


Surface-seeded Staphylococcus aureus and Pseudomonas aeruginosa (selected as model Gram-positive and Gram-negative species) were exposed to increasing doses of 405-nm light (≤ 90 Jcm-2) at three discrete irradiances (0.5, 5 and 50 mWcm-2). For both species, inactivation kinetics at each respective irradiance was established and susceptibility at equivalent light doses compared.


Results demonstrate increased bacterial susceptibility to 405-nm light inactivation when exposed at lower irradiance treatments. For both species, 3 Jcm-2 was required when exposed using 0.5 mWcm-2 irradiance to achieve significant bacterial inactivation (P < 0.05; 26.7-73.7% reduction). When exposed at 5 mWcm-2, double the energy (6 Jcm-2) was required to achieve similar reductions. Exposure at the highest irradiance (50 mWcm-2) required 3-5 times greater dose (9-15 Jcm-2) to achieve similar reductions to the lowest irradiance tested (0.5 mWcm-2).


This study provides evidence of the enhanced germicidal efficiency of low irradiance 405-nm light, highlighting its efficacy for continuous environmental decontamination applications. Further investigation into the photo-chemical inactivation mechanisms will be crucial for its optimisation for a range of infection control applications.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.

Article metrics loading...

Loading full text...

Full text loading...


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error