Full text loading...
Abstract
Phenotypic and genotypic identification methods have been used to determine the temporal and spatial dynamics of AMR-Escherichia coli in a mainly rural watercourse that receives WWTP-effluent compared to a parallel river which does not. We aimed to investigate the incidence of plasmid-mediated mcr-1and β-lactamase-genes in E. coli recovered from both water and Asellus aquaticus samples throughout two-calendar-years.
Samples of the water and A. aquaticus were recovered from the relevant locations each month. CHROMagar ESBL agar was used throughout to isolate and identify ESBL-E. coli. The presence of AMR-genes was confirmed using the ‘BSAC’ antibiotic-disk-synergy method and PCR analysis to confirm the presence of mcr-1and ESBL-genes. The CHROMagar ESBL agar was found to be 99.7% (n=578) accurate when confirmed with a PCR analysis of the ESBL-genes. Seventy-six-point-six percent (n=449) of the isolated ESBL-E. coli were correctly identified as ESBL-producing organisms using the ‘BSAC’ method. Interestingly 61.9% (n=358) of the ESBL-E. coli were also found to carry the mcr-1 gene.
Our data shows that AMR levels were highest at the WWTP-effluent throughout the two-years for both water and A. aquaticus samples. The incidence of AMR-E. coli 1km downstream of the effluent discharge was equivalent to the parallel river sites, suggesting that the dispersal of AMR from the WWTP-effluent is limited, although AMR-E. coli were found in relatively high numbers at the WWTP-effluent. We argue that the presence of AMR in the freshwater invertebrate A. aquaticus could represent an important route by which AMR can spread from the aquatic environment to the terrestrial environment.
- Published Online: