The Group A carbohydrate (GAC), a bacterial surface polysaccharide, is an essential virulence factor of Streptococcus pyogenes required for growth and infection of humans.In terms of its chemical composition, this peptidoglycan-anchored polymer is mainly formed by a string of rhamnose sugars, with alternated modifications of N-acetylglucosamine and glycerolphosphate. The rhamnose polysaccharide (RhaPS) that forms the backbone chain is synthesised intracellularly by the sequential action of three rhamnosyltransferases named GacB, GacC and GacG. Importantly, deletion of any of these rhamnosyltransferases causes bacterialdeath.

In this work, we used an interdisciplinary approach to demonstrate that: 1) GacB is a novel enzyme that initiates the RhaPS biosynthesis; 2) GacC catalyses the formation of a unique stem; 3) GacG elongates the RhaPS string by adding a yet unknown number of rhamnoses. Here, we also show that homologs from different streptococcal species can substitute GacB and GacC in the RhaPS production. In particular, we demonstrate that several human pathogens from the genus encompassed in the Lancefield serotyping scheme, and the dental pathogen mutans can replace enzymes. In contrast, the homologs from sp. D39 did not, suggesting a different structural arrangement for its surface carbohydrate. Our results highlight the importance of the group carbohydrate biosynthesis pathways in the genus and open the door for the future development of multi-target compounds that could inhibit these enzymes in pyogenes and other pathogenic streptococci of clinical and veterinary importance.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.

Article metrics loading...

Loading full text...

Full text loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error