1887

Abstract

Bacterial infection and corrosion are the two of the most significant causes of metallic implant failure. In our study, we innovated a facile two-step approach to synthesising a TiO2-PTFE nanocomposite coating on stainless steel, which endows the implant surface with both antibacterial and anticorrosion properties. By harnessing the adhesion and reactivity of bioinspired polydopamine, the TiO2-PTFE coating was uniformly deposited onto substrates by using a sol-gel dip coating technique. The TiO2-PTFE coating exhibited minimal bacterial adhesion against both Gram-negative Escherichia coli WT F1693 and Gram-positive Staphylococcus auerus F1557. Moreover, it was observed that an increasing TiO2 concentration in the bath enhanced antibacterial activity. Benefiting from the synergistic effect between TiO2 and PTFE, the TiO2-PTFE coating showed improved corrosion resistance in artificial body fluids comparing with the sole TiO2 and PTFE coatings. The TiO2-PTFE coating also demonstrated extraordinary biocompatibility with fibroblast cells in culture, making it a prospective useful strategy to overcome current challenges in the use of metallic implants.

Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.ac2019.po0536
2019-03-01
2019-10-22
Loading full text...

Full text loading...

http://instance.metastore.ingenta.com/content/journal/acmi/10.1099/acmi.ac2019.po0536
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error