1887

Abstract

In the blood stream, arginine is an essential amino acid that is required by phagocytes to synthesize iNOS. Previously we showed that the fungus Candida albicans induces host arginase production that diverts arginine from the pathway that leads to the production of nitrite oxide. We therefore investigated whether C. albicans arginase activity also contributed to the protection of the fungus by competing for arginine during infections. Three C. albicans genes had been annotated as putative arginase encoding genes. Heterologous expression of these genes suggested all three had some arginase activity and one gene product (Car1) encoded a bone fide arginase that was required for growth on arginine. However, single and double mutations in the two other genes (AGM1 and GBU1) did not affect growth on arginine as a single nitrogen source and were found instead to encode agmatinase and guanidinobutyrase respectively that participate in two other pathways related to arginine metabolism. This family of three enzymes therefore exhibits mixed biochemical activities and collectively participate in the catabolism of exogenous and endogenous sources of arginine. Virulence of the triple mutant lacking all three genes was reduced in a Galleria infection model, but single or double mutants were fully virulent. None of the single or multiple mutants affected host NO production suggesting they do not influence the oxidative burst of phagocytes. In addition, CAR1 expression was required for hyphal growth. This family of enzymes therefore represent a novel enzyme set that is essential for growth in vivo and indirectly for fungal virulence.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.ac2019.po0467
2019-04-08
2024-12-12
Loading full text...

Full text loading...

/content/journal/acmi/10.1099/acmi.ac2019.po0467
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error