1887

Abstract

The human gut microbiota is complex, dense, and hugely influential to health. Imbalances in the microbiota have been associated with numerous disease states, in many cases due to the overgrowth of Enterobacteriaceae, such as Escherichia coli. We describe an oligonucleotide antimicrobial that selectively reduces levels of Enterobacteriaceae in vitro, in a model of the human colonic microbiota, and in vivo in a murine study, whilst leaving the core microbiota intact. The antimicrobials are Transcription Factor Decoys (TFDs) that bind to and competitively inhibit an identified transcription factor necessary for growth in the intestine. This is highly conserved amongst Enterobacteriaceae and controls anaerobic respiration and response to nitrosative stress caused by the innate immune response of the host. A nanoparticulate formulation delivers the TFDs to the cytoplasm of E. coli, as visualized by confocal microscopy, and rapidly kills the bacteria under microaerobic conditions. When applied to anin vitro model of the human intestinal microbiota the TFD produced a decrease up to log10 6 c.f.u. ml in coliforms within the Enterobacteriaceae family while other families remain intact. When delivered orally to the intestines of mice similar results were seen: Enterobacteriaceae were decreased or cleared from the wild-type intestinal microbiota while the remaining bacteria were unaffected. This demonstrates that TFDs can be used to make precise changes to the microbiota and has utility in testing associations between dysbiosis and disease and developing microbiota targeted therapeutics.

Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.ac2019.po0447
2019-04-08
2019-12-05
Loading full text...

Full text loading...

http://instance.metastore.ingenta.com/content/journal/acmi/10.1099/acmi.ac2019.po0447
Loading

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error