1887

Abstract

Viable but non-culturable (VBNC) cells are cells that are metabolically active, but are unable to form colonies on standard culture media. Following environmental stimuli, such as temperature upshift, some VBNC cells can ‘resuscitate’ restoring their ability to grow on media. Currently, over 80 bacterial species are reported to enter the VBNC state. The ability of VBNC cells to go undetected by conventional microbiological practices could lead to an underestimation of total viable cells in environmental and clinical samples. Furthermore, their capacity to retain virulence potential and their ability for renewed metabolic activity means the VBNC state in pathogens may pose a risk to human health and thus warrants further investigation. This research project has investigated the ability of the human pathogen Vibrio parahaemolyticus to form VBNC cells when exposed to stressful conditions. V. parahaemolyticus is a bacterium that is present in the marine environment and can be found in seawater, shellfish (such as oysters and mussels) and in crustacea (such as crab). This bacterium is the leading cause of seafood associated gastroenteritis worldwide and often results in watery/bloody diarrhea and vomiting. We have developed robust models to generate V. parahaemolyticus VBNC cells in the laboratory and report that different sub populations of VBNC cells can occur based upon their metabolic activity, cell shape and the ability to grow and cause disease in Galleria mellonella. Using mass spectrophotometry we have identified several proteins which may play roles in VBNC formation and resuscitation in V. parahaemolyticus.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.ac2019.po0311
2019-04-08
2024-11-06
Loading full text...

Full text loading...

/content/journal/acmi/10.1099/acmi.ac2019.po0311
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error