1887

Abstract

Aurodox, a specialised metabolite from the soil bacterium Streptomyces goldiniensis, has been shown to inhibit the Enteropathogenic Escherichia coli (EPEC) Type III Secretion System (T3SS). To further assess the utility of this molecule as an anti-virulence compound, a better understanding of its mechanism of action is required. We used whole transcriptome analysis, cell infection and GFP-reporter assays to show that Aurodox transcriptionally downregulates the expression of the Locus of Enterocyte Effacement (LEE) pathogenicity island-which encodes for the T3SS, acting via its master regulator, Ler. We have also observed similar effects across other enteric pathogens carrying a homologous T3SS such as Enterohemorrhagic Escherichia coli (EHEC). These properties suggest Aurodox may have potential for the treatment of E. coli infections of the gut. Despite the recent interest in the compound, the biosynthesis of Aurodox by Streptomyces goldiniensis is still poorly understood. To gain insight in to this, we have sequenced the whole genome of S. goldiniensis and identified a putative Aurodox biosynthetic gene cluster (BGC) which shares a high level of functional homology with the BGC encoding Kirromycin, a non-methylated Aurodox derivative. In-depth analysis of the BGC supports a model where a unique polyketide synthase pathway involving a combination of both Cis and Trans-Acyltransferases synthesise the Aurodox polyketide backbone, followed by decoration and finally the addition of a methyl group. Future work will include the heterologous expression this BGC to confirm its role in Aurodox biosynthesis, with the ultimate aim to produce novel Aurodox derivatives.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.ac2019.po0058
2019-04-08
2024-04-18
Loading full text...

Full text loading...

http://instance.metastore.ingenta.com/content/journal/acmi/10.1099/acmi.ac2019.po0058
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error