Antibiotic and antimicrobial resistance is a global issue, not only for medical and veterinary treatment, but also for economic development. One of the critical bacterial pathogens known to develop resistance to antimicrobial agents is Acinetobacter baumannii, one of the ESKAPE pathogens. A. baumannii is an aerobic Gram-negative coccobacillus bacterium associated with bacteraemia, urinary tract infections and ventilator-associated pneumonia, and is typically viewed as an opportunistic pathogen. Previous research has shown that clinical strains of A. baumannii have susceptibility to novel antimicrobial peptides, specifically those identified from a rumen metagenomic dataset. Using standardised 96 well MIC testing, 3 antimicrobial peptides (Lynronne-1, Lynronne-2, Lynronne-3, identified as part of a previous research project by the Huws Lab) were compared against multiple strains of A. baumannii, in order to show efficacy of treatment against a wider variety of strains. Of the strains tested, a number were clinical isolates with demonstrated resistance (imipenem resistant, OXO-23/OXO-50). The results show that the antimicrobial peptides had noticeable inhibitory effects on the bacterial growth. There was also variation between the 3 peptides utilised, with Lynronne-1 appearing to have the lowest MIC over the majority of the strains tested. Further research as part of this project will utilise other identified antimicrobial peptides, including rationally designed peptides, as well as potentially using another gastrointestinal microbiome metagenomic dataset to identify a greater number of novel antimicrobial peptides.


Article metrics loading...

Loading full text...

Full text loading...


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error