Skip to content
1887

Abstract

Rice (.) is a vital global crop with a predominant presence in Asia, including Thailand. However, it faces a significant threat from bacterial blight disease, primarily caused by pv (). This research aims to provide valuable insights into the genetic virulence factors and genomic variations of strains isolated in Thailand. Furthermore, we present the first complete genomic database of Thai , offering a comprehensive resource for studying pathogen diversity, tracking virulence evolution and supporting disease management strategies in rice production. Our phylogenetic analysis unveils that the 20 Thai strains align with the Asian strains, setting them apart from African and US strains. Remarkably, the average identity values, in comparison with type strain 35933 (XO35933), consistently exceed 99%. These strains can be classified into three assigned ribosomal sequence types. Our investigation into the pangenome and the phylogenetic relationships of these 20 genomes reveals a diverse genetic landscape, with the pangenome comprising 11,872 orthologous gene clusters, of which roughly 30% form the core genome. Notably, all of these genomes exhibit a clustered regularly interspaced short palindromic repeats-Cas I-C array, indicative of their adaptive immune mechanisms. All strains belonged to BXO1 type LPS cassette with high identity. Furthermore, our analysis identifies two distinct types of plasmids, namely, pv. strain GX01 plasmid pXOCgx01 (A46, A57, A83, A112, D and E) and the strain AH28 plasmid pAH28 (A97). This genomic resource will be valuable for advancing research on surveillance, prevention, management and comparative studies of this critical pathogen in the future.

Funding
This study was supported by the:
  • Institut Penyelidikan dan Kemajuan Pertanian Malaysia (Award HRD65050081)
    • Principle Award Recipient: AtiradaBoondech
  • Naresuan University (R2565B003) (Award R2565B003)
    • Principle Award Recipient: NIRANAEKSIRI
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.0.000986.v4
2025-06-30
2025-07-10
Loading full text...

Full text loading...

/deliver/fulltext/acmi/7/6/acmi000986.v4.html?itemId=/content/journal/acmi/10.1099/acmi.0.000986.v4&mimeType=html&fmt=ahah

References

  1. Niño-Liu DO, Ronald PC, Bogdanove AJ. Xanthomonas oryzae pathovars: model pathogens of a model crop. Mol Plant Pathol 2006; 7:303–324 [View Article] [PubMed]
    [Google Scholar]
  2. Mondal KK, Verma G, Kulshreshtha A, Rajrana Y, Mani C et al. Complete genome sequence of Indian race 4 of Xanthomonas oryzae pv. oryzae, the causal agent of bacterial blight of rice. Mol Plant Microbe Interact 2020; 33:573–575 [View Article] [PubMed]
    [Google Scholar]
  3. Chen X, Wei S, Yan Q, Huang F, Ma Z et al. Virulence and DNA fingerprinting analysis of Xanthomonas oryzae pv. oryzae identify a new pathotype in Guangxi, South China. J Basic Microbiol 2019; 59:1082–1091 [View Article] [PubMed]
    [Google Scholar]
  4. An S-Q, Potnis N, Dow M, Vorhölter F-J, He Y-Q et al. Mechanistic insights into host adaptation, virulence and epidemiology of the phytopathogen Xanthomonas. FEMS Microbiol Rev 2019; 44:1–32
    [Google Scholar]
  5. Wilkins KE, Booher NJ, Wang L, Bogdanove AJ. TAL effectors and activation of predicted host targets distinguish Asian from African strains of the rice pathogen Xanthomonas oryzae pv. oryzicola while strict conservation suggests universal importance of five TAL effectors. Front Plant Sci 2015; 6: [View Article]
    [Google Scholar]
  6. Doucouré H, Pérez-Quintero AL, Reshetnyak G, Tekete C, Auguy F et al. Functional and genome sequence-driven characterization of tal effector gene repertoires reveals novel variants with altered specificities in closely related Malian Xanthomonas oryzae pv. oryzae strains. Front Microbiol 2018; 9: [View Article]
    [Google Scholar]
  7. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 2009; 326:1509–1512 [View Article] [PubMed]
    [Google Scholar]
  8. Mak A-S, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL. The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 2012; 335:716–719 [View Article] [PubMed]
    [Google Scholar]
  9. Deng D, Yan C, Pan X, Mahfouz M, Wang J et al. Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 2012; 335:720–723 [View Article] [PubMed]
    [Google Scholar]
  10. Kosawang C, Smitamana P, Toojinda T, Nilpanit N, Sirithunya P. Amplified fragment length polymorphism fingerprinting differentiates genetic diversity of Xanthomonas oryzae pv. oryzae from northern Thailand. J Phytopathol 2006; 154:550–555 [View Article]
    [Google Scholar]
  11. Carpenter SCD, Mishra P, Ghoshal C, Dash PK, Wang L et al. An xa5 resistance gene-breaking Indian strain of the rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae is nearly identical to a Thai strain. Front Microbiol 2020; 11:579504 [View Article] [PubMed]
    [Google Scholar]
  12. Afgan E, Baker D, Batut B, van den Beek M, Bouvier D et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res 2018; 46:W537–W544 [View Article] [PubMed]
    [Google Scholar]
  13. Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010 2017
  14. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article] [PubMed]
    [Google Scholar]
  15. De Coster W, D’Hert S, Schultz DT, Cruts M, Van Broeckhoven C. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics 2018; 34:2666–2669 [View Article] [PubMed]
    [Google Scholar]
  16. Wick R, Menzel P. Filtlong: quality filtering tool for long reads. Github 2019
    [Google Scholar]
  17. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  18. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9:e112963 [View Article] [PubMed]
    [Google Scholar]
  19. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article] [PubMed]
    [Google Scholar]
  20. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015; 31:3210–3212 [View Article] [PubMed]
    [Google Scholar]
  21. Kaas RS, Leekitcharoenphon P, Aarestrup FM, Lund O. Solving the problem of comparing whole bacterial genomes across different sequencing platforms. PLoS One 2014; 9:e104984 [View Article] [PubMed]
    [Google Scholar]
  22. Zuo G, Hao B. CVTree3 web server for whole-genome-based and alignment-free prokaryotic phylogeny and taxonomy. Genom Proteom Bioinform 2015; 13:321–331 [View Article]
    [Google Scholar]
  23. Rambaut A, Drummond A. FigTree version 1.4. 0 2012
  24. Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  25. Jolley KA, Bliss CM, Bennett JS, Bratcher HB, Brehony C et al. Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain. Microbiology 2012; 158:1005–1015 [View Article] [PubMed]
    [Google Scholar]
  26. Richter M, Lombardot T, Kostadinov I, Kottmann R, Duhaime MB et al. JCoast - a biologist-centric software tool for data mining and comparison of prokaryotic (meta)genomes. BMC Bioinform 2008; 9:177 [View Article] [PubMed]
    [Google Scholar]
  27. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article] [PubMed]
    [Google Scholar]
  28. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article] [PubMed]
    [Google Scholar]
  29. Zhang H, Yohe T, Huang L, Entwistle S, Wu P et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 2018; 46:W95–W101 [View Article] [PubMed]
    [Google Scholar]
  30. Russel J, Pinilla-Redondo R, Mayo-Muñoz D, Shah SA, Sørensen SJ. CRISPRCasTyper: automated identification, annotation, and classification of CRISPR-Cas loci. CRISPR J 2020; 3:462–469 [View Article] [PubMed]
    [Google Scholar]
  31. Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother 2020; 75:3491–3500 [View Article] [PubMed]
    [Google Scholar]
  32. Liang Q, Liu C, Xu R, Song M, Zhou Z et al. fIDBAC: a platform for fast bacterial genome identification and typing. Front Microbiol 2021; 12:723577 [View Article] [PubMed]
    [Google Scholar]
  33. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  34. Boller T, He SY. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 2009; 324:742–744 [View Article] [PubMed]
    [Google Scholar]
  35. Gómez-Gómez L, Boller T. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 2000; 5:1003–1011 [View Article] [PubMed]
    [Google Scholar]
  36. Pruitt RN, Schwessinger B, Joe A, Thomas N, Liu F et al. The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a Gram-negative bacterium. Sci Adv 2015; 1:e1500245 [View Article] [PubMed]
    [Google Scholar]
  37. Jha G, Rajeshwari R, Sonti RV. Functional interplay between two Xanthomonas oryzae pv,. oryzae secretion systems in modulating virulence on rice. Mol Plant Microbe Interact 2007; 20:31–40 [View Article] [PubMed]
    [Google Scholar]
  38. White FF, Potnis N, Jones JB, Koebnik R. The type III effectors of Xanthomonas. Mol Plant Pathol 2009; 10:749–766 [View Article] [PubMed]
    [Google Scholar]
  39. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007; 315:1709–1712 [View Article] [PubMed]
    [Google Scholar]
  40. Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 2005; 151:2551–2561 [View Article] [PubMed]
    [Google Scholar]
  41. Antipov D, Hartwick N, Shen M, Raiko M, Lapidus A et al. plasmidSPAdes: assembling plasmids from whole genome sequencing data. Bioinformatics 2016; 32:3380–3387 [View Article] [PubMed]
    [Google Scholar]
  42. Niu X-N, Wei Z-Q, Zou H-F, Xie G-G, Wu F et al. Complete sequence and detailed analysis of the first indigenous plasmid from Xanthomonas oryzae pv. oryzicola. BMC Microbiol 2015; 15:233 [View Article] [PubMed]
    [Google Scholar]
  43. Xu Z, Xu X, Wang Y, Liu L, Li Y et al. A varied AvrXa23-like TALE enables the bacterial blight pathogen to avoid being trapped by Xa23 resistance gene in rice. J Adv Res 2022; 42:263–272 [View Article] [PubMed]
    [Google Scholar]
/content/journal/acmi/10.1099/acmi.0.000986.v4
Loading
/content/journal/acmi/10.1099/acmi.0.000986.v4
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error