Skip to content
1887

Abstract

Here, we report the draft 5.8 Mb genome sequence of a isolate from untreated wastewater in Liverpool, United Kingdom. The reported isolate has the potential to produce both flexirubin and β-carotene pigments, and contains an additional biosynthetic gene cluster for a putative novel β-lactone. The genome also contains a gene for a putative β-lactamase analogue, and there are multiple copies of a putative novel insertion sequence of the IS family. This genome adds to a growing resource of spp sequencing data which can be utilized to investigate microbial pigment production, antimicrobial resistance genes and mobile genetic elements within this genus.

Funding
This study was supported by the:
  • UK Research and Innovation (Award SIPF36348)
    • Principle Award Recipient: AdamP. Roberts
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.0.000976.v3
2025-06-20
2025-07-12
Loading full text...

Full text loading...

/deliver/fulltext/acmi/7/6/acmi000976.v3.html?itemId=/content/journal/acmi/10.1099/acmi.0.000976.v3&mimeType=html&fmt=ahah

References

  1. Bernardet J-F, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article] [PubMed]
    [Google Scholar]
  2. Peeters K, Willems A. The gyrB gene is a useful phylogenetic marker for exploring the diversity of Flavobacterium strains isolated from terrestrial and aquatic habitats in Antarctica. FEMS Microbiol Lett 2011; 321:130–140 [View Article] [PubMed]
    [Google Scholar]
  3. Cousin S, Päuker O, Stackebrandt E. Flavobacterium aquidurense sp. nov. and Flavobacterium hercynium sp. nov., from a hard-water creek. Int J Syst Evol Microbiol 2007; 57:243–249 [View Article] [PubMed]
    [Google Scholar]
  4. McCammon SA, Bowman JP. Taxonomy of Antarctic Flavobacterium species: description of Flavobacterium gillisiae sp. nov., Flavobacterium tegetincola sp. nov., and Flavobacterium xanthum sp. nov., nom. rev. and reclassification of [Flavobacterium] salegens as Salegentibacter salegens gen. nov., comb. nov. Int J Syst Evol Microbiol 2000; 50 Pt 3:1055–1063 [View Article] [PubMed]
    [Google Scholar]
  5. Nogi Y, Soda K, Oikawa T. Flavobacterium frigidimaris sp. nov., isolated from Antarctic seawater. Syst Appl Microbiol 2005; 28:310–315 [View Article] [PubMed]
    [Google Scholar]
  6. Humphry DR, George A, Black GW, Cummings SP. Flavobacterium frigidarium sp. nov., an aerobic, psychrophilic, xylanolytic and laminarinolytic bacterium from Antarctica. Int J Syst Evol Microbiol 2001; 51:1235–1243 [View Article] [PubMed]
    [Google Scholar]
  7. Heckman TI, Yazdi Z, Pomaranski EK, Sebastião F de A, Mukkatira K et al. Atypical flavobacteria recovered from diseased fish in the Western United States. Front Cell Infect Microbiol 2023; 13:1149032 [View Article] [PubMed]
    [Google Scholar]
  8. Stine CB, Li C, Crosby TC, Hasbrouck NR, Lam C et al. Draft whole-genome sequences of 18 Flavobacterium spp. Genome Announc 2017; 5:e00865–17
    [Google Scholar]
  9. Lee B-H, Nicolas P, Saticioglu IB, Fradet B, Bernardet J-F et al. Investigation of the genus Flavobacterium as a reservoir for fish-pathogenic bacterial species: the case of Flavobacterium collinsii. Appl Environ Microbiol 2023; 89:e0216222 [View Article] [PubMed]
    [Google Scholar]
  10. Sung JY, Kim TS, Shin S, Roh EY, Yoon JH et al. Flavobacterium ceti from blood samples of a Korean patient with alcoholic liver cirrhosis. Ann Lab Med 2015; 35:384–386 [View Article] [PubMed]
    [Google Scholar]
  11. Park S-K, Ryoo N. A case of Flavobacterium ceti meningitis. Ann Lab Med 2016; 36:614–616 [View Article] [PubMed]
    [Google Scholar]
  12. Zhong TG, Ri PD, Yan ZH, Hai J, Yun CB et al. A Flavobacterium lindanitolerans strain isolated from the ascites sample of a Chinese patient with EV71 virus infection. Biomed Environ Sci 2011; 24:694–696
    [Google Scholar]
  13. Zurbuchen R, de Roche M, Galimanis A, Narr K, Dubuis O et al. First case of meningoencephalitis and bacteraemia with Flavobacterium lindanitolerans. Eur J Case Rep Intern Med 2023; 10:003980 [View Article] [PubMed]
    [Google Scholar]
  14. Cantillon D, Roberts AP. Development and evaluation of TaqMan-based, one-step, real-time RT-PCR assays for pepper mild mottle virus detection for near source tracking and wastewater-based epidemiology validation. PLoS One 2022; 17:e0278784 [View Article] [PubMed]
    [Google Scholar]
  15. Roberts AP. Swab and send: a citizen science, antibiotic discovery project. Future Sci OA 2020; 6:FSO477 [View Article] [PubMed]
    [Google Scholar]
  16. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009; 10:421 [View Article] [PubMed]
    [Google Scholar]
  17. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article] [PubMed]
    [Google Scholar]
  18. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  19. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  20. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  21. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  22. Blin K, Shaw S, Augustijn HE, Reitz ZL, Biermann F et al. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res 2023; 51:W46–W50 [View Article] [PubMed]
    [Google Scholar]
  23. McBride MJ, Xie G, Martens EC, Lapidus A, Henrissat B et al. Novel features of the polysaccharide-digesting gliding bacterium Flavobacterium johnsoniae as revealed by genome sequence analysis. Appl Environ Microbiol 2009; 75:6864–6875 [View Article] [PubMed]
    [Google Scholar]
  24. Stra A, Almarwaey LO, Alagoz Y, Moreno JC, Al-Babili S. Carotenoid metabolism: new insights and synthetic approaches. Front Plant Sci 2022; 13:1072061 [View Article] [PubMed]
    [Google Scholar]
  25. Pasamontes L, Hug D, Tessier M, Hohmann HP, Schierle J et al. Isolation and characterization of the carotenoid biosynthesis genes of Flavobacterium sp. strain R1534. Gene 1997; 185:35–41 [View Article] [PubMed]
    [Google Scholar]
  26. Zhuo Y, Jin C-Z, Lee C-S, Shin K-S, Lee H-G. Comparative genomics and evolutionary insights into zeaxanthin biosynthesis in two novel Flavobacterium species. BMC Microbiol 2025; 25:240 [View Article] [PubMed]
    [Google Scholar]
  27. Nishida Y, Adachi K, Kasai H, Shizuri Y, Shindo K et al. Elucidation of a carotenoid biosynthesis gene cluster encoding a novel enzyme, 2,2’-beta-hydroxylase, from Brevundimonas sp. strain SD212 and combinatorial biosynthesis of new or rare xanthophylls. Appl Environ Microbiol 2005; 71:4286–4296 [View Article] [PubMed]
    [Google Scholar]
  28. Berry A, Janssens D, Hümbelin M, Jore JPM, Hoste B et al. Paracoccus zeaxanthinifaciens sp. nov., a zeaxanthin-producing bacterium. Int J Syst Evol Microbiol 2003; 53:231–238 [View Article] [PubMed]
    [Google Scholar]
  29. Robinson SL, Christenson JK, Wackett LP. Biosynthesis and chemical diversity of β-lactone natural products. Nat Prod Rep 2019; 36:458–475 [View Article] [PubMed]
    [Google Scholar]
  30. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article] [PubMed]
    [Google Scholar]
  31. Zdouc MM, Blin K, Louwen NLL, Navarro J, Loureiro C et al. MIBiG 4.0: advancing biosynthetic gene cluster curation through global collaboration. Nucleic Acids Research 2025; 53:D678–D690 [View Article]
    [Google Scholar]
  32. Alcock BP, Huynh W, Chalil R, Smith KW, Raphenya AR et al. CARD 2023: expanded curation, support for machine learning, and resistome prediction at the comprehensive antibiotic resistance database. Nucleic Acids Res 2023; 51:D690–D699 [View Article] [PubMed]
    [Google Scholar]
  33. Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother 2020; 75:3491–3500 [View Article] [PubMed]
    [Google Scholar]
  34. Naas T, Bellais S, Nordmann P. Molecular and biochemical characterization of a carbapenem-hydrolysing beta-lactamase from Flavobacterium johnsoniae. J Antimicrob Chemother 2003; 51:267–273 [View Article] [PubMed]
    [Google Scholar]
  35. Garau G, García-Sáez I, Bebrone C, Anne C, Mercuri P et al. Update of the standard numbering scheme for class B beta-lactamases. Antimicrob Agents Chemother 2004; 48:2347–2349 [View Article] [PubMed]
    [Google Scholar]
  36. Johansson MHK, Bortolaia V, Tansirichaiya S, Aarestrup FM, Roberts AP et al. Detection of mobile genetic elements associated with antibiotic resistance in Salmonella enterica using a newly developed web tool: mobileelementfinder. J Antimicrob Chemother 2021; 76:101–109 [View Article] [PubMed]
    [Google Scholar]
  37. Kapatral V, Anderson I, Ivanova N, Reznik G, Los T et al. Genome sequence and analysis of the oral bacterium Fusobacterium nucleatum strain ATCC 25586. J Bacteriol 2002; 184:2005–2018 [View Article] [PubMed]
    [Google Scholar]
  38. Lee WG, Kim W. Identification of a novel insertion sequence in vanB2-containing Enterococcus faecium. Lett Appl Microbiol 2003; 36:186–190 [View Article] [PubMed]
    [Google Scholar]
  39. Aruldass CA, Dufossé L, Ahmad WA. Current perspective of yellowish-orange pigments from microorganisms- a review. J Clean Prod 2018; 180:168–182 [View Article]
    [Google Scholar]
  40. Gilchrist CLM, Chooi Y-H. clinker & clustermap.js: automatic generation of gene cluster comparison figures. Bioinformatics 2021; 37:2473–2475 [View Article] [PubMed]
    [Google Scholar]
/content/journal/acmi/10.1099/acmi.0.000976.v3
Loading
/content/journal/acmi/10.1099/acmi.0.000976.v3
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error